We study infinitesimal deformations of autodual and hyper-holomorphic connections on complex vector bundles on hyper-Kähler manifolds of arbitrary dimension. In particular, we describe the DG Lie algebra controlling this deformation problem. Moreover, we prove associative formality for derived endomorphisms of a holomorphic vector bundle admitting a projectively hyper-holomorphic connection.

Meazzini, F., Onorati, C. (2023). Hyper-holomorphic connections on vector bundles on hyper-Kähler manifolds. MATHEMATISCHE ZEITSCHRIFT, 303(1), 1-34 [10.1007/s00209-022-03176-4].

Hyper-holomorphic connections on vector bundles on hyper-Kähler manifolds

Meazzini, Francesco
;
Onorati, Claudio
2023

Abstract

We study infinitesimal deformations of autodual and hyper-holomorphic connections on complex vector bundles on hyper-Kähler manifolds of arbitrary dimension. In particular, we describe the DG Lie algebra controlling this deformation problem. Moreover, we prove associative formality for derived endomorphisms of a holomorphic vector bundle admitting a projectively hyper-holomorphic connection.
2023
Meazzini, F., Onorati, C. (2023). Hyper-holomorphic connections on vector bundles on hyper-Kähler manifolds. MATHEMATISCHE ZEITSCHRIFT, 303(1), 1-34 [10.1007/s00209-022-03176-4].
Meazzini, Francesco; Onorati, Claudio
File in questo prodotto:
File Dimensione Formato  
2204.04075.pdf

Open Access dal 12/12/2023

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 459.93 kB
Formato Adobe PDF
459.93 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/914226
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact