The efficiency of plasmonic metallic nanoparticles in harvesting and concentrating light energy in their proximity triggers a wealth of important and intriguing phenomena. For example, spectros- copies are able to reach single-molecule and intramolecule sensitivities, and important chemical reactions can be effectively photocatalyzed. For the real-time description of the coupled dynamics of a molecule’s electronic system and of a plasmonic nanoparticle, a methodology has been recently proposed (J. Phys. Chem. C. 120, 2016, 28774−28781) which combines the classical description of the nanoparticle as a polarizable continuum medium with a quantum-mechanical description of the molecule treated at the time-dependent configuration interaction (TDCI) level. In this work, we extend this methodology by describing the molecule using many-body perturbation theory: the molecule’s excitation energies, transition dipoles, and potentials computed at the GW/Bethe−Salpeter equation (BSE) level. This allows us to overcome current limitations of TDCI in terms of achievable accuracy without compromising on the accessible molecular sizes. We illustrate the developed scheme by characterizing the coupled nanoparticle/molecule dynamics of two prototype molecules, LiCN and p-nitroaniline.

Electronic Dynamics of a Molecular System Coupled to a Plasmonic Nanoparticle Combining the Polarizable Continuum Model and Many-Body Perturbation Theory

Marsili M;
2022

Abstract

The efficiency of plasmonic metallic nanoparticles in harvesting and concentrating light energy in their proximity triggers a wealth of important and intriguing phenomena. For example, spectros- copies are able to reach single-molecule and intramolecule sensitivities, and important chemical reactions can be effectively photocatalyzed. For the real-time description of the coupled dynamics of a molecule’s electronic system and of a plasmonic nanoparticle, a methodology has been recently proposed (J. Phys. Chem. C. 120, 2016, 28774−28781) which combines the classical description of the nanoparticle as a polarizable continuum medium with a quantum-mechanical description of the molecule treated at the time-dependent configuration interaction (TDCI) level. In this work, we extend this methodology by describing the molecule using many-body perturbation theory: the molecule’s excitation energies, transition dipoles, and potentials computed at the GW/Bethe−Salpeter equation (BSE) level. This allows us to overcome current limitations of TDCI in terms of achievable accuracy without compromising on the accessible molecular sizes. We illustrate the developed scheme by characterizing the coupled nanoparticle/molecule dynamics of two prototype molecules, LiCN and p-nitroaniline.
File in questo prodotto:
File Dimensione Formato  
2022_acs.jpcc.2c02209.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/914134
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 3
social impact