A rigorous and general logical scheme is presented, which provides an operative non-statistical definition of entropy valid also in the nonequilibrium domain and free of the usual conceptual loops and unnecessary assumptions that restrict the traditional definition of entropy to the equilibrium domain. The scheme is based on carefully worded operative definitions for all the fundamental concepts employed, including those of system, state of a system, isolated system, separable system, systems uncorrelated form each other, environment of a system, process and reversible process. The treatment considers also systems with movable internal walls and/or semipermeable walls, with chemical reactions and and/or external force fields, and with small numbers of particles. The definition of entropy involves neither the concept of heat nor that of quasistatic process; it applies to both equilibrium and nonequilibrium states. Simple and rigorous proofs of the additivity of entropy and of the principle of entropy nondecrease complete the logical framework.

E. Zanchini, G.P. Beretta (2010). Removing Heat and Conceptual Loops from the Definition of Entropy. INTERNATIONAL JOURNAL OF APPLIED THERMODYNAMICS, 13, 67-76.

Removing Heat and Conceptual Loops from the Definition of Entropy

ZANCHINI, ENZO;
2010

Abstract

A rigorous and general logical scheme is presented, which provides an operative non-statistical definition of entropy valid also in the nonequilibrium domain and free of the usual conceptual loops and unnecessary assumptions that restrict the traditional definition of entropy to the equilibrium domain. The scheme is based on carefully worded operative definitions for all the fundamental concepts employed, including those of system, state of a system, isolated system, separable system, systems uncorrelated form each other, environment of a system, process and reversible process. The treatment considers also systems with movable internal walls and/or semipermeable walls, with chemical reactions and and/or external force fields, and with small numbers of particles. The definition of entropy involves neither the concept of heat nor that of quasistatic process; it applies to both equilibrium and nonequilibrium states. Simple and rigorous proofs of the additivity of entropy and of the principle of entropy nondecrease complete the logical framework.
2010
E. Zanchini, G.P. Beretta (2010). Removing Heat and Conceptual Loops from the Definition of Entropy. INTERNATIONAL JOURNAL OF APPLIED THERMODYNAMICS, 13, 67-76.
E. Zanchini; G.P. Beretta
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/91358
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact