We find an explicit formula for the Kazhdan-Lusztig polynomials Pui a, vi of the symmetric group fraktur G sign(n) where, for a, i, n ∈ ℕ such that 1 ≤ a ≤ i ≤ n, we denote by ui,a = s asa+1 script G sign si-1 and by vi the element of fraktur G sign(n) obtained by inserting n in position i in any permutation of fraktur G sign(n - 1) allowed to lise only in the first and in the last place Our result implies, in particular, the validity of two conjectures of Brenti and Simion [4, Conjectures 4.2 and 4.3], and includes as a special case a result of Shapiro, Shapiro and Vainshtein [13, Theorem 1] All the proofs are purely combinatorial and make no use of the geometry of the corresponding Schubert varieties.

Caselli Fabrizio (2003). Proof of Two Conjectures of Brenti and Simion on Kazhdan-Lusztig Polynomials. JOURNAL OF ALGEBRAIC COMBINATORICS, 18(3), 171-187 [10.1023/B:JACO.0000011936.75388.14].

Proof of Two Conjectures of Brenti and Simion on Kazhdan-Lusztig Polynomials

Caselli Fabrizio
2003

Abstract

We find an explicit formula for the Kazhdan-Lusztig polynomials Pui a, vi of the symmetric group fraktur G sign(n) where, for a, i, n ∈ ℕ such that 1 ≤ a ≤ i ≤ n, we denote by ui,a = s asa+1 script G sign si-1 and by vi the element of fraktur G sign(n) obtained by inserting n in position i in any permutation of fraktur G sign(n - 1) allowed to lise only in the first and in the last place Our result implies, in particular, the validity of two conjectures of Brenti and Simion [4, Conjectures 4.2 and 4.3], and includes as a special case a result of Shapiro, Shapiro and Vainshtein [13, Theorem 1] All the proofs are purely combinatorial and make no use of the geometry of the corresponding Schubert varieties.
2003
Caselli Fabrizio (2003). Proof of Two Conjectures of Brenti and Simion on Kazhdan-Lusztig Polynomials. JOURNAL OF ALGEBRAIC COMBINATORICS, 18(3), 171-187 [10.1023/B:JACO.0000011936.75388.14].
Caselli Fabrizio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/913296
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact