We discuss some time-degenerate Schrödinger equations on R × Rn and on R × T2. We give weighted Strichartz estimates and local well-posedness results for the corresponding semilinear IVP (initial value problem). On R×T2 we also consider some nondegenerate space-variable coefficient Schrödinger equations and give a result about the local well-posedness of the cubic IVP.

Federico, S. (2022). On some variable coefficient Schrödinger operators on R × Rn and R × T 2. Rio de Janeiro : SBM- Sociedade Brasileira de Matemática [10.21711/231766362022/rmc522].

On some variable coefficient Schrödinger operators on R × Rn and R × T 2

Federico, Serena
2022

Abstract

We discuss some time-degenerate Schrödinger equations on R × Rn and on R × T2. We give weighted Strichartz estimates and local well-posedness results for the corresponding semilinear IVP (initial value problem). On R×T2 we also consider some nondegenerate space-variable coefficient Schrödinger equations and give a result about the local well-posedness of the cubic IVP.
2022
ICMC Summer Meeting on Differential Equations – Chapter 2022
17
37
Federico, S. (2022). On some variable coefficient Schrödinger operators on R × Rn and R × T 2. Rio de Janeiro : SBM- Sociedade Brasileira de Matemática [10.21711/231766362022/rmc522].
Federico, Serena
File in questo prodotto:
File Dimensione Formato  
Federico-Mat-Cont-Article-02-vol-52.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 542.11 kB
Formato Adobe PDF
542.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/913189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact