We discuss some time-degenerate Schrödinger equations on R × Rn and on R × T2. We give weighted Strichartz estimates and local well-posedness results for the corresponding semilinear IVP (initial value problem). On R×T2 we also consider some nondegenerate space-variable coefficient Schrödinger equations and give a result about the local well-posedness of the cubic IVP.
Federico, S. (2022). On some variable coefficient Schrödinger operators on R × Rn and R × T 2. Rio de Janeiro : SBM- Sociedade Brasileira de Matemática [10.21711/231766362022/rmc522].
On some variable coefficient Schrödinger operators on R × Rn and R × T 2
Federico, Serena
2022
Abstract
We discuss some time-degenerate Schrödinger equations on R × Rn and on R × T2. We give weighted Strichartz estimates and local well-posedness results for the corresponding semilinear IVP (initial value problem). On R×T2 we also consider some nondegenerate space-variable coefficient Schrödinger equations and give a result about the local well-posedness of the cubic IVP.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Federico-Mat-Cont-Article-02-vol-52.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso libero gratuito
Dimensione
542.11 kB
Formato
Adobe PDF
|
542.11 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.