The molecular factors and gene regulation involved in sex determination and gonad differentiation in bivalve molluscs are unknown. It has been suggested that doubly uniparental inheritance (DUI) of mitochondria may be involved in these processes in species such as the ubiquitous and commercially relevant Manila clam, Ruditapes philippinarum. We present the first long-read-based de novo genome assembly of a Manila clam, and a RNA-Seq multi-tissue analysis of 15 females and 15 males. The highly contiguous genome assembly was used as reference to investigate gene expression, alternative splicing, sequence evolution, tissue-specific co-expression networks, and sexual contrasting SNPs. Differential expression (DE) and differential splicing (DS) analyses revealed sex-specific transcriptional regulation in gonads, but not in somatic tissues. Co-expression networks revealed complex gene regulation in gonads, and genes in gonad-associated modules showed high tissue specificity. However, male gonad-associated modules showed contrasting patterns of sequence evolution and tissue specificity. One gene set was related to the structural organization of male gametes and presented slow sequence evolution but high pleiotropy, whereas another gene set was enriched in reproduction-related processes and characterized by fast sequence evolution and tissue specificity. Sexual contrasting SNPs were found in genes overrepresented in mitochondrial-related functions, providing new candidates for investigating the relationship between mitochondria and sex in DUI species. Together, these results increase our understanding of the role of DE, DS, and sequence evolution of sex-specific genes in an understudied taxon. We also provide resourceful genomic data for studies regarding sex diagnosis and breeding in bivalves.

Xu, R., Martelossi, J., Smits, M., Iannello, M., Peruzza, L., Babbucci, M., et al. (2022). Multi-tissue RNA-Seq Analysis and Long-read-based Genome Assembly Reveal Complex Sex-specific Gene Regulation and Molecular Evolution in the Manila Clam. GENOME BIOLOGY AND EVOLUTION, 14(12), 1-16 [10.1093/gbe/evac171].

Multi-tissue RNA-Seq Analysis and Long-read-based Genome Assembly Reveal Complex Sex-specific Gene Regulation and Molecular Evolution in the Manila Clam

Xu, Ran
;
Martelossi, Jacopo;Iannello, Mariangela;Milani, Liliana;Passamonti, Marco;Ghiselli, Fabrizio
2022

Abstract

The molecular factors and gene regulation involved in sex determination and gonad differentiation in bivalve molluscs are unknown. It has been suggested that doubly uniparental inheritance (DUI) of mitochondria may be involved in these processes in species such as the ubiquitous and commercially relevant Manila clam, Ruditapes philippinarum. We present the first long-read-based de novo genome assembly of a Manila clam, and a RNA-Seq multi-tissue analysis of 15 females and 15 males. The highly contiguous genome assembly was used as reference to investigate gene expression, alternative splicing, sequence evolution, tissue-specific co-expression networks, and sexual contrasting SNPs. Differential expression (DE) and differential splicing (DS) analyses revealed sex-specific transcriptional regulation in gonads, but not in somatic tissues. Co-expression networks revealed complex gene regulation in gonads, and genes in gonad-associated modules showed high tissue specificity. However, male gonad-associated modules showed contrasting patterns of sequence evolution and tissue specificity. One gene set was related to the structural organization of male gametes and presented slow sequence evolution but high pleiotropy, whereas another gene set was enriched in reproduction-related processes and characterized by fast sequence evolution and tissue specificity. Sexual contrasting SNPs were found in genes overrepresented in mitochondrial-related functions, providing new candidates for investigating the relationship between mitochondria and sex in DUI species. Together, these results increase our understanding of the role of DE, DS, and sequence evolution of sex-specific genes in an understudied taxon. We also provide resourceful genomic data for studies regarding sex diagnosis and breeding in bivalves.
2022
Xu, R., Martelossi, J., Smits, M., Iannello, M., Peruzza, L., Babbucci, M., et al. (2022). Multi-tissue RNA-Seq Analysis and Long-read-based Genome Assembly Reveal Complex Sex-specific Gene Regulation and Molecular Evolution in the Manila Clam. GENOME BIOLOGY AND EVOLUTION, 14(12), 1-16 [10.1093/gbe/evac171].
Xu, Ran; Martelossi, Jacopo; Smits, Morgan; Iannello, Mariangela; Peruzza, Luca; Babbucci, Massimiliano; Milan, Massimo; Dunham, Joseph P; Breton, Sop...espandi
File in questo prodotto:
File Dimensione Formato  
evac171.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 934.14 kB
Formato Adobe PDF
934.14 kB Adobe PDF Visualizza/Apri
evac171_supplementary_data.zip

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.15 MB
Formato Zip File
1.15 MB Zip File Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/912987
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 7
social impact