We present new Expanded Very Large Array (EVLA) continuum observations at 7 mm of the 253-1536 binary disk system in the Orion Nebula Cluster. The measured fluxes were combined with data in the submillimeter to derive the millimeter spectral index of each individual disk component. We show how these observations can be used to test the models of dust evolution and early growth of solids in protoplanetary disks. Our analysis indicates that the disk with lower density and higher temperature hosts larger grains than the companion disk. This result is the opposite of what is predicted by the dust evolution models. The models and observational results can be reconciled if the viscosity α-parameter differs by more than a factor of 10 in the two disks, or if the distribution of solids in the disks is strongly affected by radial motions. This analysis can be applied to future high angular resolution observations of young disks with EVLA and ALMA to provide even stronger observational constraints to the models of dust evolution in protoplanetary disks.

Ricci L, Testi L, Williams J, Mann R, Birnstiel T (2011). The mm-colors of a Young Binary Disk System in the Orion Nebula Cluster. THE ASTROPHYSICAL JOURNAL LETTERS, 739, 8-12 [10.1088/2041-8205/739/1/L8].

The mm-colors of a Young Binary Disk System in the Orion Nebula Cluster

Testi L;
2011

Abstract

We present new Expanded Very Large Array (EVLA) continuum observations at 7 mm of the 253-1536 binary disk system in the Orion Nebula Cluster. The measured fluxes were combined with data in the submillimeter to derive the millimeter spectral index of each individual disk component. We show how these observations can be used to test the models of dust evolution and early growth of solids in protoplanetary disks. Our analysis indicates that the disk with lower density and higher temperature hosts larger grains than the companion disk. This result is the opposite of what is predicted by the dust evolution models. The models and observational results can be reconciled if the viscosity α-parameter differs by more than a factor of 10 in the two disks, or if the distribution of solids in the disks is strongly affected by radial motions. This analysis can be applied to future high angular resolution observations of young disks with EVLA and ALMA to provide even stronger observational constraints to the models of dust evolution in protoplanetary disks.
2011
Ricci L, Testi L, Williams J, Mann R, Birnstiel T (2011). The mm-colors of a Young Binary Disk System in the Orion Nebula Cluster. THE ASTROPHYSICAL JOURNAL LETTERS, 739, 8-12 [10.1088/2041-8205/739/1/L8].
Ricci L; Testi L; Williams J; Mann R; Birnstiel T
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/912123
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact