We investigate the structure and kinematics of the circumstellar disk around the Herbig Ae star MWC 758 using high-resolution observations of the 12CO (3-2) and dust continuum emission at the wavelengths of 0.87 and 3.3 mm. We find that the dust emission peaks at an orbital radius of about 100 AU, while the CO intensity has a central peak coincident with the position of the star. The CO emission is in agreement with a disk in Keplerian rotation around a 2.0 M sun star, confirming that MWC 758 is indeed an intermediate-mass star. By comparing the observation with theoretical disk models, we derive that the disk surface density Σ(r) steeply increases from 40 to 100 AU and decreases exponentially outward. Within 40 AU, the disk has to be optically thin in the continuum emission at millimeter wavelengths to explain the observed dust morphology, though our observations lack the angular resolution and sensitivity required to constrain the surface density on these spatial scales. The surface density distribution in MWC 758 disk is similar to that of "transition" disks, though no disk clearing has been previously inferred from the analysis of the spectral energy distribution (SED). Moreover, the asymmetries observed in the dust and CO emission suggest that the disk may be gravitationally perturbed by a low-mass companion orbiting within a radius of 30 AU. Our results emphasize that SEDs alone do not provide a complete picture of disk structure and that high-resolution millimeter-wave images are essential to reveal the structure of the cool disk mid-plane.

Isella A, Natta A, Wilner D, Carpenter J, Testi L (2010). Millimeter Imaging of MWC 758: Probing the Disk Structure and Kinematics. THE ASTROPHYSICAL JOURNAL, 725, 1735-1741 [10.1088/0004-637X/725/2/1735].

Millimeter Imaging of MWC 758: Probing the Disk Structure and Kinematics

Testi L
2010

Abstract

We investigate the structure and kinematics of the circumstellar disk around the Herbig Ae star MWC 758 using high-resolution observations of the 12CO (3-2) and dust continuum emission at the wavelengths of 0.87 and 3.3 mm. We find that the dust emission peaks at an orbital radius of about 100 AU, while the CO intensity has a central peak coincident with the position of the star. The CO emission is in agreement with a disk in Keplerian rotation around a 2.0 M sun star, confirming that MWC 758 is indeed an intermediate-mass star. By comparing the observation with theoretical disk models, we derive that the disk surface density Σ(r) steeply increases from 40 to 100 AU and decreases exponentially outward. Within 40 AU, the disk has to be optically thin in the continuum emission at millimeter wavelengths to explain the observed dust morphology, though our observations lack the angular resolution and sensitivity required to constrain the surface density on these spatial scales. The surface density distribution in MWC 758 disk is similar to that of "transition" disks, though no disk clearing has been previously inferred from the analysis of the spectral energy distribution (SED). Moreover, the asymmetries observed in the dust and CO emission suggest that the disk may be gravitationally perturbed by a low-mass companion orbiting within a radius of 30 AU. Our results emphasize that SEDs alone do not provide a complete picture of disk structure and that high-resolution millimeter-wave images are essential to reveal the structure of the cool disk mid-plane.
2010
Isella A, Natta A, Wilner D, Carpenter J, Testi L (2010). Millimeter Imaging of MWC 758: Probing the Disk Structure and Kinematics. THE ASTROPHYSICAL JOURNAL, 725, 1735-1741 [10.1088/0004-637X/725/2/1735].
Isella A; Natta A; Wilner D; Carpenter J; Testi L
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/912088
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 94
  • ???jsp.display-item.citation.isi??? 97
social impact