In this lecture, we review the properties of protoplanetary disks as derived from high angular resolution observations at millimeter wavelengths. We discuss how the combination of several different high angular resolution techniques allow us to probe different regions of the disk around young stellar objects and to derive the properties of the dust when combined with sophisticated disk models. The picture that emerges is that the dust in circumstellar disks surrounding pre-main sequence stars is in many cases significantly evolved compared to the dust in molecular clouds and the interstellar medium. It is however still difficult to derive a consistent picture and timeline for dust evolution in disks as the observations are still limited to small samples of objects. We also review the evidence for and properties of disks around high-mass young stellar objects and the implications on their formation mechanisms. The study of massive YSOs is complicated by their short lifetimes and larger average distances. In most cases high angular resolution data at millimeter wavelengths are the only method to probe the structure of disks in these objects. We provide a summary of the characteristics of available high angular resolution millimeter and submillimeter observatories. We also describe the characteristics of the ALMA observatory being constructed in the Chilean Andes. ALMA is going to be the world leading observatory at millimeter wavelengths in the coming decades, the project is now in its main construction phase with early science activities envisaged for 2010 and full science operations for 2012.

Testi L, Leurini S (2008). High angular resolution millimeter observations of circumstellar disks. NEW ASTRONOMY REVIEWS, 52, 105-116 [10.1016/j.newar.2008.04.010].

High angular resolution millimeter observations of circumstellar disks

Testi L;
2008

Abstract

In this lecture, we review the properties of protoplanetary disks as derived from high angular resolution observations at millimeter wavelengths. We discuss how the combination of several different high angular resolution techniques allow us to probe different regions of the disk around young stellar objects and to derive the properties of the dust when combined with sophisticated disk models. The picture that emerges is that the dust in circumstellar disks surrounding pre-main sequence stars is in many cases significantly evolved compared to the dust in molecular clouds and the interstellar medium. It is however still difficult to derive a consistent picture and timeline for dust evolution in disks as the observations are still limited to small samples of objects. We also review the evidence for and properties of disks around high-mass young stellar objects and the implications on their formation mechanisms. The study of massive YSOs is complicated by their short lifetimes and larger average distances. In most cases high angular resolution data at millimeter wavelengths are the only method to probe the structure of disks in these objects. We provide a summary of the characteristics of available high angular resolution millimeter and submillimeter observatories. We also describe the characteristics of the ALMA observatory being constructed in the Chilean Andes. ALMA is going to be the world leading observatory at millimeter wavelengths in the coming decades, the project is now in its main construction phase with early science activities envisaged for 2010 and full science operations for 2012.
2008
Testi L, Leurini S (2008). High angular resolution millimeter observations of circumstellar disks. NEW ASTRONOMY REVIEWS, 52, 105-116 [10.1016/j.newar.2008.04.010].
Testi L; Leurini S
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/912062
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact