We present new multi-wavelength millimeter interferometric observations of the Herbig Ae star HD 163296 obtained with the IRAM/PBI, SMA and VLA arrays both in continuum and in the 12CO, 13CO and C18O emission lines. Gas and dust properties have been obtained comparing the observations with self-consistent disk models for the dust and CO emission. The circumstellar disk is resolved both in the continuum and in CO. We find strong evidence that the circumstellar material is in Keplerian rotation around a central star of 2.6 M_⊙. The disk inclination with respect to the line of sight is 46° ± 4° with a position angle of 128° ± 4°. The slope of the dust opacity measured between 0.87 and 7 mm (β = 1) confirms the presence of mm/cm-size grains in the disk midplane. The dust continuum emission is asymmetric and confined inside a radius of 200 AU while the CO emission extends up to 540 AU. The comparison between dust and CO temperature indicates that CO is present only in the disk interior. Finally, we obtain an increasing depletion of CO isotopomers from 12CO to 13CO and C18O. We argue that these results support the idea that the disk of HD 163296 is strongly evolved. In particular, we suggest that there is a strong depletion of dust relative to gas outside 200 AU; this may be due to the inward migration of large bodies that form in the outer disk or to clearing of a large gap in the dust distribution by a low mass companion.
Isella A, Testi L, Natta A, Neri R, Wilner D, Qi C (2007). Millimeter imaging of HD 163296: probing the disk structure and kinematics. ASTRONOMY & ASTROPHYSICS, 469, 213-222 [10.1051/0004-6361:20077385].
Millimeter imaging of HD 163296: probing the disk structure and kinematics
Testi L;
2007
Abstract
We present new multi-wavelength millimeter interferometric observations of the Herbig Ae star HD 163296 obtained with the IRAM/PBI, SMA and VLA arrays both in continuum and in the 12CO, 13CO and C18O emission lines. Gas and dust properties have been obtained comparing the observations with self-consistent disk models for the dust and CO emission. The circumstellar disk is resolved both in the continuum and in CO. We find strong evidence that the circumstellar material is in Keplerian rotation around a central star of 2.6 M_⊙. The disk inclination with respect to the line of sight is 46° ± 4° with a position angle of 128° ± 4°. The slope of the dust opacity measured between 0.87 and 7 mm (β = 1) confirms the presence of mm/cm-size grains in the disk midplane. The dust continuum emission is asymmetric and confined inside a radius of 200 AU while the CO emission extends up to 540 AU. The comparison between dust and CO temperature indicates that CO is present only in the disk interior. Finally, we obtain an increasing depletion of CO isotopomers from 12CO to 13CO and C18O. We argue that these results support the idea that the disk of HD 163296 is strongly evolved. In particular, we suggest that there is a strong depletion of dust relative to gas outside 200 AU; this may be due to the inward migration of large bodies that form in the outer disk or to clearing of a large gap in the dust distribution by a low mass companion.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.