We compute the growth of the mean square of quantum fluctuations of test fields with small effective mass during a slowly changing, nearly de Sitter stage which takes place in different inflationary models. We consider a minimally coupled scalar with a small mass, a modulus with an effective mass ∝H2 (with H the Hubble parameter), and a massless nonminimally coupled scalar in the test field approximation and compare the growth of their relative mean square with the one of gauge-invariant inflaton fluctuations. We find that in most of the single field inflationary models the mean square gauge-invariant inflaton fluctuation grows faster than any test field with a non-negative effective mass. Hybrid inflationary models can be an exception: the mean square of a test field can dominate over the gauge-invariant inflaton fluctuation one on suitably chosen parameters. We also compute the stochastic growth of quantum fluctuations of a second field, relaxing the assumption of its zero homogeneous value, in a generic inflationary model; as a main result, we obtain that the equation of motion of a gauge-invariant variable associated, order by order, with a generic quantum scalar fluctuation during inflation can be obtained only if we use the number of e-folds as the time variable in the corresponding Langevin and Fokker-Planck equations for the stochastic approach. We employ this approach to derive some bounds for the case of a model with two massive fields.

Stochastic growth of quantum fluctuations during slow-roll inflation / F.Finelli;G.Marozzi;A.Starobinsky;G.P.Vacca;G.Venturi. - In: PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. - ISSN 1550-7998. - STAMPA. - 82:(2010), pp. 064020-064020. [10.1103/PhysRevD.82.064020]

Stochastic growth of quantum fluctuations during slow-roll inflation

MAROZZI, GIOVANNI;VENTURI, GIOVANNI
2010

Abstract

We compute the growth of the mean square of quantum fluctuations of test fields with small effective mass during a slowly changing, nearly de Sitter stage which takes place in different inflationary models. We consider a minimally coupled scalar with a small mass, a modulus with an effective mass ∝H2 (with H the Hubble parameter), and a massless nonminimally coupled scalar in the test field approximation and compare the growth of their relative mean square with the one of gauge-invariant inflaton fluctuations. We find that in most of the single field inflationary models the mean square gauge-invariant inflaton fluctuation grows faster than any test field with a non-negative effective mass. Hybrid inflationary models can be an exception: the mean square of a test field can dominate over the gauge-invariant inflaton fluctuation one on suitably chosen parameters. We also compute the stochastic growth of quantum fluctuations of a second field, relaxing the assumption of its zero homogeneous value, in a generic inflationary model; as a main result, we obtain that the equation of motion of a gauge-invariant variable associated, order by order, with a generic quantum scalar fluctuation during inflation can be obtained only if we use the number of e-folds as the time variable in the corresponding Langevin and Fokker-Planck equations for the stochastic approach. We employ this approach to derive some bounds for the case of a model with two massive fields.
2010
Stochastic growth of quantum fluctuations during slow-roll inflation / F.Finelli;G.Marozzi;A.Starobinsky;G.P.Vacca;G.Venturi. - In: PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. - ISSN 1550-7998. - STAMPA. - 82:(2010), pp. 064020-064020. [10.1103/PhysRevD.82.064020]
F.Finelli;G.Marozzi;A.Starobinsky;G.P.Vacca;G.Venturi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/91174
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 89
social impact