The mere development of a software to predict University dropout is not sufficient for its effective implementation in the academic context. In order to exploit it as a tool supporting decision-making, such a software should be provided with information necessary for its integration into the decision-making processes of University governance. In this work, we present a predictive tool, at the state of the art, providing a functional description of its integration through practical examples. In addition, we propose a simplified scheme to guide the reasoning on the software, which we structure according to the following processes: the learning of the machine, the choice of the representation of dropout and the interpretation of the results. Finally, we share some considerations addressing education designers and institutional decision-makers on the management of interventions inspired by the prediction of freshmen academic outcome.
Predictive models for effective policy making against university dropout
Stefano Zingaro
Primo
Methodology
;Francesca Del BonifroPenultimo
Writing – Review & Editing
;Maurizio GabbrielliUltimo
Supervision
2020
Abstract
The mere development of a software to predict University dropout is not sufficient for its effective implementation in the academic context. In order to exploit it as a tool supporting decision-making, such a software should be provided with information necessary for its integration into the decision-making processes of University governance. In this work, we present a predictive tool, at the state of the art, providing a functional description of its integration through practical examples. In addition, we propose a simplified scheme to guide the reasoning on the software, which we structure according to the following processes: the learning of the machine, the choice of the representation of dropout and the interpretation of the results. Finally, we share some considerations addressing education designers and institutional decision-makers on the management of interventions inspired by the prediction of freshmen academic outcome.File | Dimensione | Formato | |
---|---|---|---|
zingaro2020.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
436.74 kB
Formato
Adobe PDF
|
436.74 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.