Given a non-convex two-dimensional area and identical rectangular stands, we consider the problem of placing the maximum number of stands in the area, by satisfying a number of operational constraints. We present linear programming models and show the total unimodularity of the matrices associated with their constraint sets. We then give computational results obtained by applying the models to the real-world case of the Beira Mar handcraft fair of Fortaleza (Brazil).

A. E. Fernandes Muritiba, M. Iori, S. Martello, M. J. Negreiros Gomes (2010). Models and algorithms for fair layout optimization problems. ANNALS OF OPERATIONS RESEARCH, 179, 5-14 [10.1007/s10479-008-0451-x].

Models and algorithms for fair layout optimization problems

MARTELLO, SILVANO;
2010

Abstract

Given a non-convex two-dimensional area and identical rectangular stands, we consider the problem of placing the maximum number of stands in the area, by satisfying a number of operational constraints. We present linear programming models and show the total unimodularity of the matrices associated with their constraint sets. We then give computational results obtained by applying the models to the real-world case of the Beira Mar handcraft fair of Fortaleza (Brazil).
2010
A. E. Fernandes Muritiba, M. Iori, S. Martello, M. J. Negreiros Gomes (2010). Models and algorithms for fair layout optimization problems. ANNALS OF OPERATIONS RESEARCH, 179, 5-14 [10.1007/s10479-008-0451-x].
A. E. Fernandes Muritiba; M. Iori; S. Martello; M. J. Negreiros Gomes
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/90949
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact