All maximally superintegrable Hamiltonian systems in three-dimensional flat space derived in the work of Evans [Phys. Rev. A 41, 5666-5676 (1990)] are shown to possess hidden symmetries leading to their linearization, likewise the maximally superintegrable Hamiltonian systems in two-dimensional flat space as shown in the work of Gubbiotti and Nucci [J. Math. Phys. 58, 012902 (2017)]. We conjecture that even minimally superintegrable systems in three-dimensional flat space have hidden symmetries that make them linearizable.

Nucci M. C., Campoamor-Stursberg R. (2021). Maximally superintegrable systems in flat three-dimensional space are linearizable. JOURNAL OF MATHEMATICAL PHYSICS, 62(1), 1-13 [10.1063/5.0007377].

Maximally superintegrable systems in flat three-dimensional space are linearizable

Nucci M. C.;
2021

Abstract

All maximally superintegrable Hamiltonian systems in three-dimensional flat space derived in the work of Evans [Phys. Rev. A 41, 5666-5676 (1990)] are shown to possess hidden symmetries leading to their linearization, likewise the maximally superintegrable Hamiltonian systems in two-dimensional flat space as shown in the work of Gubbiotti and Nucci [J. Math. Phys. 58, 012902 (2017)]. We conjecture that even minimally superintegrable systems in three-dimensional flat space have hidden symmetries that make them linearizable.
2021
Nucci M. C., Campoamor-Stursberg R. (2021). Maximally superintegrable systems in flat three-dimensional space are linearizable. JOURNAL OF MATHEMATICAL PHYSICS, 62(1), 1-13 [10.1063/5.0007377].
Nucci M. C.; Campoamor-Stursberg R.
File in questo prodotto:
File Dimensione Formato  
3191095.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 4.35 MB
Formato Adobe PDF
4.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/908917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact