Nineteen classical superintegrable systems in two-dimensional non-Euclidean spaces are shown to possess hidden symmetries leading to their linearization. They are the two Perlick systems [Ballesteros et al., Classical Quantum Gravity 25, 165005 (2008)], the Taub–NUT system [Ballesteros et al., SIGMA 7, 048 (2011)], and all the 17 superintegrable systems for the four types of Darboux spaces as determined by Kalnins et al. [J. Math. Phys. 44, 5811–5848 (2003)].
G. Gubbiotti, M. C. Nucci (2021). Superintegrable systems in non-Euclidean plane: Hidden symmetries leading to linearity. JOURNAL OF MATHEMATICAL PHYSICS, 62(7), 1-28 [10.1063/5.0041130].
Superintegrable systems in non-Euclidean plane: Hidden symmetries leading to linearity
M. C. Nucci
2021
Abstract
Nineteen classical superintegrable systems in two-dimensional non-Euclidean spaces are shown to possess hidden symmetries leading to their linearization. They are the two Perlick systems [Ballesteros et al., Classical Quantum Gravity 25, 165005 (2008)], the Taub–NUT system [Ballesteros et al., SIGMA 7, 048 (2011)], and all the 17 superintegrable systems for the four types of Darboux spaces as determined by Kalnins et al. [J. Math. Phys. 44, 5811–5848 (2003)].File | Dimensione | Formato | |
---|---|---|---|
3205872.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso libero gratuito
Dimensione
4.53 MB
Formato
Adobe PDF
|
4.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.