Nineteen classical superintegrable systems in two-dimensional non-Euclidean spaces are shown to possess hidden symmetries leading to their linearization. They are the two Perlick systems [Ballesteros et al., Classical Quantum Gravity 25, 165005 (2008)], the Taub–NUT system [Ballesteros et al., SIGMA 7, 048 (2011)], and all the 17 superintegrable systems for the four types of Darboux spaces as determined by Kalnins et al. [J. Math. Phys. 44, 5811–5848 (2003)].

G. Gubbiotti, M. C. Nucci (2021). Superintegrable systems in non-Euclidean plane: Hidden symmetries leading to linearity. JOURNAL OF MATHEMATICAL PHYSICS, 62(7), 1-28 [10.1063/5.0041130].

Superintegrable systems in non-Euclidean plane: Hidden symmetries leading to linearity

M. C. Nucci
2021

Abstract

Nineteen classical superintegrable systems in two-dimensional non-Euclidean spaces are shown to possess hidden symmetries leading to their linearization. They are the two Perlick systems [Ballesteros et al., Classical Quantum Gravity 25, 165005 (2008)], the Taub–NUT system [Ballesteros et al., SIGMA 7, 048 (2011)], and all the 17 superintegrable systems for the four types of Darboux spaces as determined by Kalnins et al. [J. Math. Phys. 44, 5811–5848 (2003)].
2021
G. Gubbiotti, M. C. Nucci (2021). Superintegrable systems in non-Euclidean plane: Hidden symmetries leading to linearity. JOURNAL OF MATHEMATICAL PHYSICS, 62(7), 1-28 [10.1063/5.0041130].
G. Gubbiotti; M. C. Nucci
File in questo prodotto:
File Dimensione Formato  
3205872.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 4.53 MB
Formato Adobe PDF
4.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/908906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact