When recorded signals are corrupted by noise on both input and output sides, standard identification methods give biased parameter estimates, due to the presence of input noise. This paper discusses in what situations such a bias is large and, consequently, when errors-in-variables identification methods should preferably be used.

Soderstrom, T., Soverini, U. (2022). When Are Errors-in-Variables Aspects Important to Consider in System Identification?. 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.23919/ECC55457.2022.9838030].

When Are Errors-in-Variables Aspects Important to Consider in System Identification?

Soverini, U
2022

Abstract

When recorded signals are corrupted by noise on both input and output sides, standard identification methods give biased parameter estimates, due to the presence of input noise. This paper discusses in what situations such a bias is large and, consequently, when errors-in-variables identification methods should preferably be used.
2022
Proceedings 2022 European Control Conference (ECC)
315
320
Soderstrom, T., Soverini, U. (2022). When Are Errors-in-Variables Aspects Important to Consider in System Identification?. 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.23919/ECC55457.2022.9838030].
Soderstrom, T; Soverini, U
File in questo prodotto:
File Dimensione Formato  
Soverini_ECC_2022.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 494.02 kB
Formato Adobe PDF
494.02 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/908685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact