We study the effective theory of a generic class of hidden sectors where supersymmetry is broken together with an approximate R-symmetry at low energy. The light spectrum contains the gravitino and the pseudo-Nambu-Goldstone boson of the R-symmetry, the R-axion. We derive new model-independent constraints on the R-axion decay constant for R-axion masses ranging from GeV to TeV, which are of relevance for hadron colliders, lepton colliders, and B factories. The current bounds allow for the exciting possibility that the first sign of supersymmetry will be the R-axion. We point out its most distinctive signals, providing a new experimental handle on the properties of the hidden sector and a solid motivation for searches of axionlike particles.
Bellazzini B., Mariotti A., Redigolo D., Sala F., Serra J. (2017). R -Axion at Colliders. PHYSICAL REVIEW LETTERS, 119(14), 1-6 [10.1103/PhysRevLett.119.141804].
R -Axion at Colliders
Sala F.;
2017
Abstract
We study the effective theory of a generic class of hidden sectors where supersymmetry is broken together with an approximate R-symmetry at low energy. The light spectrum contains the gravitino and the pseudo-Nambu-Goldstone boson of the R-symmetry, the R-axion. We derive new model-independent constraints on the R-axion decay constant for R-axion masses ranging from GeV to TeV, which are of relevance for hadron colliders, lepton colliders, and B factories. The current bounds allow for the exciting possibility that the first sign of supersymmetry will be the R-axion. We point out its most distinctive signals, providing a new experimental handle on the properties of the hidden sector and a solid motivation for searches of axionlike particles.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.