We continue the study of the fractional variation following the distributional approach developed in the previous works Brue et al. (2021), Comi and Stefani (2019), Comi and Stefani (2019). We provide a general analysis of the distributional space BV alpha,p(R-n) of L-p functions, with p is an element of [1, +infinity], possessing finite fractional variation of order alpha is an element of (0, 1). Our two main results deal with the absolute continuity property of the fractional variation with respect to the Hausdorff measure and the existence of the precise representative of a BV alpha,p function.

The fractional variation and the precise representative of BVα,p functions

Giovanni E. Comi;
2022

Abstract

We continue the study of the fractional variation following the distributional approach developed in the previous works Brue et al. (2021), Comi and Stefani (2019), Comi and Stefani (2019). We provide a general analysis of the distributional space BV alpha,p(R-n) of L-p functions, with p is an element of [1, +infinity], possessing finite fractional variation of order alpha is an element of (0, 1). Our two main results deal with the absolute continuity property of the fractional variation with respect to the Hausdorff measure and the existence of the precise representative of a BV alpha,p function.
2022
Giovanni E. Comi; Daniel Spector; Giorgio Stefani
File in questo prodotto:
File Dimensione Formato  
s13540-022-00036-0.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 637.91 kB
Formato Adobe PDF
637.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/908070
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact