We lay the foundations for a theory of divergence-measure fields in noncommutative stratified nilpotent Lie groups. Such vector fields form a new family of function spaces, which generalize in a sense the BV fields. They provide the most general setting to establish Gauss-Green formulas for vector fields of low regularity on sets of finite perimeter. We show several properties of divergence-measure fields in stratified groups, ultimately achieving the related Gauss-Green theorem. (C) 2019 Elsevier Inc. All rights reserved.
Comi, G., Magnani, V. (2020). The Gauss–Green theorem in stratified groups. ADVANCES IN MATHEMATICS, 360, 1-85 [10.1016/j.aim.2019.106916].
The Gauss–Green theorem in stratified groups
Comi, G. E.;
2020
Abstract
We lay the foundations for a theory of divergence-measure fields in noncommutative stratified nilpotent Lie groups. Such vector fields form a new family of function spaces, which generalize in a sense the BV fields. They provide the most general setting to establish Gauss-Green formulas for vector fields of low regularity on sets of finite perimeter. We show several properties of divergence-measure fields in stratified groups, ultimately achieving the related Gauss-Green theorem. (C) 2019 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
1806.04011.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
760.53 kB
Formato
Adobe PDF
|
760.53 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.