We apply the results established in [12] to prove some new fractional Leibniz rules involving BVα,p and Sα,p functions, following the distributional approach adopted in the previous works [8,13,14]. In order to achieve our main results, we revise the elementary properties of the fractional operators involved in the framework of Besov spaces and we rephraze the Kenig–Ponce–Vega Leibniz-type rule in our fractional context. We apply our results to prove the well-posedness of the boundary-value problem for a general 2α-order fractional elliptic operator in divergence form.

Comi G.E., Stefani G. (2022). Leibniz rules and Gauss–Green formulas in distributional fractional spaces. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 514(2), 1-41 [10.1016/j.jmaa.2022.126312].

Leibniz rules and Gauss–Green formulas in distributional fractional spaces

Comi G. E.;
2022

Abstract

We apply the results established in [12] to prove some new fractional Leibniz rules involving BVα,p and Sα,p functions, following the distributional approach adopted in the previous works [8,13,14]. In order to achieve our main results, we revise the elementary properties of the fractional operators involved in the framework of Besov spaces and we rephraze the Kenig–Ponce–Vega Leibniz-type rule in our fractional context. We apply our results to prove the well-posedness of the boundary-value problem for a general 2α-order fractional elliptic operator in divergence form.
2022
Comi G.E., Stefani G. (2022). Leibniz rules and Gauss–Green formulas in distributional fractional spaces. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 514(2), 1-41 [10.1016/j.jmaa.2022.126312].
Comi G.E.; Stefani G.
File in questo prodotto:
File Dimensione Formato  
Comi_Stefani_Leibniz_rules_and_Gauss_Green_formulas.pdf

Open Access dal 11/05/2024

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 806.02 kB
Formato Adobe PDF
806.02 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/908064
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact