If the smooth vector fields X1,…,Xm and their commutators span the tangent space at every point in Ω⊆RN for any fixed m≤N, then we establish the full interior regularity theory of quasi-linear equations ∑i=1mXi⁎Ai(X1u,…,Xmu)=0 with p-Laplacian type growth condition. In other words, we show that a weak solution of the equation is locally C1,α.

Regularity of quasi-linear equations with H??rmander vector fields of step two / Giovanna Citti; Shirsho Mukherjee. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 408:(2022), pp. 108593.1-108593.66. [10.1016/j.aim.2022.108593]

Regularity of quasi-linear equations with H??rmander vector fields of step two

Giovanna Citti;Shirsho Mukherjee
2022

Abstract

If the smooth vector fields X1,…,Xm and their commutators span the tangent space at every point in Ω⊆RN for any fixed m≤N, then we establish the full interior regularity theory of quasi-linear equations ∑i=1mXi⁎Ai(X1u,…,Xmu)=0 with p-Laplacian type growth condition. In other words, we show that a weak solution of the equation is locally C1,α.
2022
Regularity of quasi-linear equations with H??rmander vector fields of step two / Giovanna Citti; Shirsho Mukherjee. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 408:(2022), pp. 108593.1-108593.66. [10.1016/j.aim.2022.108593]
Giovanna Citti; Shirsho Mukherjee
File in questo prodotto:
File Dimensione Formato  
2110.04377.pdf

accesso aperto

Tipo: Preprint
Licenza: Licenza per accesso libero gratuito
Dimensione 544.46 kB
Formato Adobe PDF
544.46 kB Adobe PDF Visualizza/Apri
regularity.pdf

embargo fino al 25/07/2024

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 573.74 kB
Formato Adobe PDF
573.74 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/907710
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact