This study aims at predicting the outcomes of legal cases based on the textual content of judicial decisions. We present a new corpus of Italian documents, consisting of 226 annotated decisions on Value Added Tax by Regional Tax law commissions. We address the task of predicting whether a request is upheld or rejected in the final decision. We employ traditional classifiers and NLP methods to assess which parts of the decision are more informative for the task.

Federico Galli, G.G. (2022). Predicting outcomes of Italian VAT decisions. IOS Press [10.3233/FAIA220465].

Predicting outcomes of Italian VAT decisions

Federico Galli;Giulia Grundler;Alessia Fidelangeli;Andrea Galassi
;
Francesca Lagioia
;
Elena Palmieri;Federico Ruggeri;Giovanni Sartor;Paolo Torroni
2022

Abstract

This study aims at predicting the outcomes of legal cases based on the textual content of judicial decisions. We present a new corpus of Italian documents, consisting of 226 annotated decisions on Value Added Tax by Regional Tax law commissions. We address the task of predicting whether a request is upheld or rejected in the final decision. We employ traditional classifiers and NLP methods to assess which parts of the decision are more informative for the task.
2022
Legal Knowledge and Information Systems: JURIX 2022
188
193
Federico Galli, G.G. (2022). Predicting outcomes of Italian VAT decisions. IOS Press [10.3233/FAIA220465].
Federico Galli, Giulia Grundler, Alessia Fidelangeli, Andrea Galassi, Francesca Lagioia, Elena Palmieri, Federico Ruggeri, Giovanni Sartor, Paolo Torr...espandi
File in questo prodotto:
File Dimensione Formato  
Predicting-Outcomes-of-Italian-VAT-Decisions.pdf

accesso aperto

Descrizione: published
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 200 kB
Formato Adobe PDF
200 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/907552
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact