Plant-associated bacteria, including pathogens, recognise host-derived signals to activate specific responses. The genome of Pseudomonas syringae pv. actinidiae (Psa), the aetiological agent of bacterial canker of kiwifruit, encodes for three putative LuxR-like receptors. Proteins of this family are usually involved in the quorum sensing system, through the perception of autoinducers (AHLs) produced by a cognate LuxI. However, Psa does not produce AHLs according to the lack of LuxI-encoding gene. It has been proposed that the so-called LuxR solos may be involved in the perception of environmental stimuli. We thus hypothesised that Psa LuxR-like receptors could be involved in host-derived signal sensing.Psa virulence traits, i.e., biofilm formation, motility and endophytic colonisation, were stimulated by growing the pathogen in host plant extracts, but not in non-host plant extracts or rich medium. Moreover, the phenotypic analyses of Psa mutant strains lacking the LuxR solo-encoding genes, demonstrated that PsaR2 plays a major role in host recognition and induction of virulence responses. The heterologous expression of PsaR2, followed by affinity chromatography and fraction activity assessment, confirmed the specific recognition of plant-derived components by this sensor. Overall, these data provide a deeper understanding of the regulation of Psa virulence through interkingdom communication, which represents a interesting target for the development of tolerant/resistant genotypes or innovative control strategies.

Host-specific signal perception by PsaR2 LuxR solo induces Pseudomonas syringae pv. actinidiae virulence traits / Cellini, Antonio; Buriani, Giampaolo; Correia, Cristiana; Fiorentini, Luca; Vandelle, Elodie; Polverari, Annalisa; Santos, Conceição; Vanneste, Joel L; Spinelli, Francesco. - In: MICROBIOLOGICAL RESEARCH. - ISSN 0944-5013. - ELETTRONICO. - 260:127048(2022), pp. 1-21. [10.1016/j.micres.2022.127048]

Host-specific signal perception by PsaR2 LuxR solo induces Pseudomonas syringae pv. actinidiae virulence traits

Cellini, Antonio;Buriani, Giampaolo;Fiorentini, Luca;Spinelli, Francesco
Ultimo
Conceptualization
2022

Abstract

Plant-associated bacteria, including pathogens, recognise host-derived signals to activate specific responses. The genome of Pseudomonas syringae pv. actinidiae (Psa), the aetiological agent of bacterial canker of kiwifruit, encodes for three putative LuxR-like receptors. Proteins of this family are usually involved in the quorum sensing system, through the perception of autoinducers (AHLs) produced by a cognate LuxI. However, Psa does not produce AHLs according to the lack of LuxI-encoding gene. It has been proposed that the so-called LuxR solos may be involved in the perception of environmental stimuli. We thus hypothesised that Psa LuxR-like receptors could be involved in host-derived signal sensing.Psa virulence traits, i.e., biofilm formation, motility and endophytic colonisation, were stimulated by growing the pathogen in host plant extracts, but not in non-host plant extracts or rich medium. Moreover, the phenotypic analyses of Psa mutant strains lacking the LuxR solo-encoding genes, demonstrated that PsaR2 plays a major role in host recognition and induction of virulence responses. The heterologous expression of PsaR2, followed by affinity chromatography and fraction activity assessment, confirmed the specific recognition of plant-derived components by this sensor. Overall, these data provide a deeper understanding of the regulation of Psa virulence through interkingdom communication, which represents a interesting target for the development of tolerant/resistant genotypes or innovative control strategies.
2022
Host-specific signal perception by PsaR2 LuxR solo induces Pseudomonas syringae pv. actinidiae virulence traits / Cellini, Antonio; Buriani, Giampaolo; Correia, Cristiana; Fiorentini, Luca; Vandelle, Elodie; Polverari, Annalisa; Santos, Conceição; Vanneste, Joel L; Spinelli, Francesco. - In: MICROBIOLOGICAL RESEARCH. - ISSN 0944-5013. - ELETTRONICO. - 260:127048(2022), pp. 1-21. [10.1016/j.micres.2022.127048]
Cellini, Antonio; Buriani, Giampaolo; Correia, Cristiana; Fiorentini, Luca; Vandelle, Elodie; Polverari, Annalisa; Santos, Conceição; Vanneste, Joel L; Spinelli, Francesco
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/907506
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact