The COVID-19 Lung Segmentation project provides a novel, unsupervised and fully auto- mated pipeline for the semantic segmentation of ground-glass opacity (GGO) areas in chest Computer Tomography (CT) scans of patients affected by COVID-19. In the project we provide a series of scripts and functions for the automated segmentation of lungs 3D areas, segmentation of GGO areas, and estimation of radiomic features.
Biondi, R., Curti, N., Giampieri, E., Castellani, G. (2021). COVID-19 Lung Segmentation. JOURNAL OF OPEN SOURCE SOFTWARE, 6(65), 1-3 [10.21105/joss.03447].
COVID-19 Lung Segmentation
Biondi, Riccardo;Curti, Nico;Giampieri, Enrico;Castellani, Gastone
2021
Abstract
The COVID-19 Lung Segmentation project provides a novel, unsupervised and fully auto- mated pipeline for the semantic segmentation of ground-glass opacity (GGO) areas in chest Computer Tomography (CT) scans of patients affected by COVID-19. In the project we provide a series of scripts and functions for the automated segmentation of lungs 3D areas, segmentation of GGO areas, and estimation of radiomic features.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
10.21105.joss.03447.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
129.69 kB
Formato
Adobe PDF
|
129.69 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.