The COVID-19 Lung Segmentation project provides a novel, unsupervised and fully auto- mated pipeline for the semantic segmentation of ground-glass opacity (GGO) areas in chest Computer Tomography (CT) scans of patients affected by COVID-19. In the project we provide a series of scripts and functions for the automated segmentation of lungs 3D areas, segmentation of GGO areas, and estimation of radiomic features.
COVID-19 Lung Segmentation
Biondi, Riccardo;Curti, Nico;Giampieri, Enrico;Castellani, Gastone
2021
Abstract
The COVID-19 Lung Segmentation project provides a novel, unsupervised and fully auto- mated pipeline for the semantic segmentation of ground-glass opacity (GGO) areas in chest Computer Tomography (CT) scans of patients affected by COVID-19. In the project we provide a series of scripts and functions for the automated segmentation of lungs 3D areas, segmentation of GGO areas, and estimation of radiomic features.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
10.21105.joss.03447.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
129.69 kB
Formato
Adobe PDF
|
129.69 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.