The COVID-19 Lung Segmentation project provides a novel, unsupervised and fully auto- mated pipeline for the semantic segmentation of ground-glass opacity (GGO) areas in chest Computer Tomography (CT) scans of patients affected by COVID-19. In the project we provide a series of scripts and functions for the automated segmentation of lungs 3D areas, segmentation of GGO areas, and estimation of radiomic features.

Biondi, R., Curti, N., Giampieri, E., Castellani, G. (2021). COVID-19 Lung Segmentation. JOURNAL OF OPEN SOURCE SOFTWARE, 6(65), 1-3 [10.21105/joss.03447].

COVID-19 Lung Segmentation

Biondi, Riccardo;Curti, Nico;Giampieri, Enrico;Castellani, Gastone
2021

Abstract

The COVID-19 Lung Segmentation project provides a novel, unsupervised and fully auto- mated pipeline for the semantic segmentation of ground-glass opacity (GGO) areas in chest Computer Tomography (CT) scans of patients affected by COVID-19. In the project we provide a series of scripts and functions for the automated segmentation of lungs 3D areas, segmentation of GGO areas, and estimation of radiomic features.
2021
Biondi, R., Curti, N., Giampieri, E., Castellani, G. (2021). COVID-19 Lung Segmentation. JOURNAL OF OPEN SOURCE SOFTWARE, 6(65), 1-3 [10.21105/joss.03447].
Biondi, Riccardo; Curti, Nico; Giampieri, Enrico; Castellani, Gastone
File in questo prodotto:
File Dimensione Formato  
10.21105.joss.03447.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 129.69 kB
Formato Adobe PDF
129.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/907355
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact