Pedicle screws is the current gold standard in spine surgery, achieving a solid tricolumnar fixation which is unreachable by wires and hooks. The freehand technique is the most widely adopted for pedicle screws placing. While freehand technique has been classically performed with manual tools, there has been a recent trend toward the use of power tools. However, placing a pedicle screw remains a technically demanding procedure with significant risk of complications. The aim of this article is to retrospectively evaluate safety and accuracy of free-hand power-assisted pedicle screw placement in a cohort of patients who underwent correction and fusion surgery for scoliosis (both idiopathic and non-idiopathic) in our department. A retrospective review of all patients with scoliosis who underwent surgery and received a postoperative CT scan in our department in a 9-year period was undertaken. Screw density, number and location of pedicle screws were measured using pre and postoperative full-length standing and lateral supine side-bending radiographs. Then, postoperative CT scan was used to assess the accuracy of screw placement according to Gertzbein-Robbins scale. Malpositioned screws were divided according to their displacement direction. Finally, intra and postoperative neurological complications and the need for revision of misplaced screws were recorded. A total of 205 patients were included, with a follow-up of 64.9 ± 38.67 months. All constructs were high density (average density 1.97 ± 0.04), and the average number of fusion levels was 13.72 ± 1.97. A total of 5522 screws were placed: 5308 (96.12%) were grade A, 141 (2.5%) grade B, 73 (1.32%) grade C. Neither grade D nor grade E trajectories were found. The absolute accuracy (grade A) rate was 96.12% (5308/5522) and the effective accuracy (within the safe zone, grade A + B) was 98.6% (5449/5522). Of the 73 misplaced screws (grade C), 59 were lateral (80.80%), 8 anterior (10.95%) and 6 medial (8.22%); 58 were in convexity, while 15 were in concavity (the difference was not statistically significant, p = 0.33). Intraoperatively, neither neurological nor vascular complications were recorded. Postoperatively, 4 screws needed revision (0.072% of the total): Power-assisted pedicle screw placing may be a safe an accurate technique in the scoliosis surgery, both of idiopathic and non-idiopathic etiology. Further, and higher quality, research is necessary in order to better assess the results of this relatively emerging technique.
Faldini, C., Barile, F., Viroli, G., Manzetti, M., Ialuna, M., Traversari, M., et al. (2022). Freehand power-assisted pedicle screw placement in scoliotic patients: results on 5522 consecutive pedicle screws. MUSCULOSKELETAL SURGERY, 1, 1-6 [10.1007/s12306-022-00754-x].
Freehand power-assisted pedicle screw placement in scoliotic patients: results on 5522 consecutive pedicle screws
Faldini, C;Barile, F;Viroli, G;Manzetti, M
;Ialuna, M;Traversari, M;Paolucci, A;Rinaldi, A;D'Antonio, G;Ruffilli, A
2022
Abstract
Pedicle screws is the current gold standard in spine surgery, achieving a solid tricolumnar fixation which is unreachable by wires and hooks. The freehand technique is the most widely adopted for pedicle screws placing. While freehand technique has been classically performed with manual tools, there has been a recent trend toward the use of power tools. However, placing a pedicle screw remains a technically demanding procedure with significant risk of complications. The aim of this article is to retrospectively evaluate safety and accuracy of free-hand power-assisted pedicle screw placement in a cohort of patients who underwent correction and fusion surgery for scoliosis (both idiopathic and non-idiopathic) in our department. A retrospective review of all patients with scoliosis who underwent surgery and received a postoperative CT scan in our department in a 9-year period was undertaken. Screw density, number and location of pedicle screws were measured using pre and postoperative full-length standing and lateral supine side-bending radiographs. Then, postoperative CT scan was used to assess the accuracy of screw placement according to Gertzbein-Robbins scale. Malpositioned screws were divided according to their displacement direction. Finally, intra and postoperative neurological complications and the need for revision of misplaced screws were recorded. A total of 205 patients were included, with a follow-up of 64.9 ± 38.67 months. All constructs were high density (average density 1.97 ± 0.04), and the average number of fusion levels was 13.72 ± 1.97. A total of 5522 screws were placed: 5308 (96.12%) were grade A, 141 (2.5%) grade B, 73 (1.32%) grade C. Neither grade D nor grade E trajectories were found. The absolute accuracy (grade A) rate was 96.12% (5308/5522) and the effective accuracy (within the safe zone, grade A + B) was 98.6% (5449/5522). Of the 73 misplaced screws (grade C), 59 were lateral (80.80%), 8 anterior (10.95%) and 6 medial (8.22%); 58 were in convexity, while 15 were in concavity (the difference was not statistically significant, p = 0.33). Intraoperatively, neither neurological nor vascular complications were recorded. Postoperatively, 4 screws needed revision (0.072% of the total): Power-assisted pedicle screw placing may be a safe an accurate technique in the scoliosis surgery, both of idiopathic and non-idiopathic etiology. Further, and higher quality, research is necessary in order to better assess the results of this relatively emerging technique.File | Dimensione | Formato | |
---|---|---|---|
s12306-022-00754-x.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
445.31 kB
Formato
Adobe PDF
|
445.31 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.