In this letter we present a finite temperature approach to a high-dimensional inference problem, the Wigner spiked model, with group-dependent signal-to-noise ratios. For two classes of convex and non-convex network architectures the error in the reconstruction is described in terms of the solution of a mean-field spin-glass on the Nishimori line. In the cases studied the order parameters do not fluctuate and are the solution of finite dimensional variational problems. The deep architecture is optimized in order to confine the high temperature phase where reconstruction fails. Copyright (C) 2022 EPLA

Alberici, D., Camilli, F., Contucci, P., Mingione, E. (2022). A Statistical Physics approach to a multi-channel Wigner spiked model. EUROPHYSICS LETTERS, 136(4), p1-p6 [10.1209/0295-5075/ac4794].

A Statistical Physics approach to a multi-channel Wigner spiked model

Camilli, F
;
Contucci, P;Mingione, E
2022

Abstract

In this letter we present a finite temperature approach to a high-dimensional inference problem, the Wigner spiked model, with group-dependent signal-to-noise ratios. For two classes of convex and non-convex network architectures the error in the reconstruction is described in terms of the solution of a mean-field spin-glass on the Nishimori line. In the cases studied the order parameters do not fluctuate and are the solution of finite dimensional variational problems. The deep architecture is optimized in order to confine the high temperature phase where reconstruction fails. Copyright (C) 2022 EPLA
2022
Alberici, D., Camilli, F., Contucci, P., Mingione, E. (2022). A Statistical Physics approach to a multi-channel Wigner spiked model. EUROPHYSICS LETTERS, 136(4), p1-p6 [10.1209/0295-5075/ac4794].
Alberici, D; Camilli, F; Contucci, P; Mingione, E
File in questo prodotto:
File Dimensione Formato  
EPL_Camilli.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/906994
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact