In previous works, the authors showed that the interleaving of an electrospun nylon nanofibrous mat at the interface between adjacent plies of a composite laminate increases the delamination strength. In particular, the nanomat acts a net-like reinforcing web, enabling a ply-to-ply bridging effect. This reinforcing property of the nanomats can be potentially used in other applications which need to improve the fracture resistance of interfaces, such as adhesive bonding. The present work analyses the feasibility of an electrospun polymeric nanomat as adhesive carrier and reinforcing web in industrial bonding. Thus the adhesive is used to pre-impregnate a nylon nanofibrous mat that is then placed at the interface between two metal pieces and then cured. The aim of the work is first to assess the effectiveness of this procedure, by comparison of the mode-I fracture toughness measured with DCB (Double Cantilever Beam) tests with and without the reinforcement in the adhesive layer. For this purpose, a 2024-T3 aluminum alloy will be bonded using a general purpose, one-part epoxy resin with low viscosity.
Musiari F., Pirondi A., Moroni F., Giuliese G., Belcari J., Zucchelli A., et al. (2016). Feasibility study of adhesive bonding reinforcement by electrospun nanofibers. SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS : Elsevier B.V. [10.1016/j.prostr.2016.06.015].
Feasibility study of adhesive bonding reinforcement by electrospun nanofibers
Belcari J.;Zucchelli A.;Brugo T. M.;Minak G.;
2016
Abstract
In previous works, the authors showed that the interleaving of an electrospun nylon nanofibrous mat at the interface between adjacent plies of a composite laminate increases the delamination strength. In particular, the nanomat acts a net-like reinforcing web, enabling a ply-to-ply bridging effect. This reinforcing property of the nanomats can be potentially used in other applications which need to improve the fracture resistance of interfaces, such as adhesive bonding. The present work analyses the feasibility of an electrospun polymeric nanomat as adhesive carrier and reinforcing web in industrial bonding. Thus the adhesive is used to pre-impregnate a nylon nanofibrous mat that is then placed at the interface between two metal pieces and then cured. The aim of the work is first to assess the effectiveness of this procedure, by comparison of the mode-I fracture toughness measured with DCB (Double Cantilever Beam) tests with and without the reinforcement in the adhesive layer. For this purpose, a 2024-T3 aluminum alloy will be bonded using a general purpose, one-part epoxy resin with low viscosity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.