We present the complete automation of the universal subtraction formalism proposed by Frixione, Kunszt, and Signer for the computation of any cross section at the next-to-leading order in QCD. Given a process, the only ingredient to be provided externally is the infrared-and ultraviolet-finite contribution of virtual origin. Our implementation, currently restricted to the case of e(+)e(-) collisions, is built upon and works in the same way as MadGraph. It is particularly suited to parallel computation, and it can deal with any physical process resulting from a theory implemented in MadGraph, thus including the Standard Model as well as Beyond the Standard Model theories. We give results for some sample processes that document the performances of the implementation, and show in particular how the number of subtraction terms has an extremely mild growth with final-state multiplicity.
Rikkert Frederix, Stefano Frixione, Fabio Maltoni, Tim Stelzer (2009). Automation of next-to-leading order computations in QCD: the FKS subtraction. JOURNAL OF HIGH ENERGY PHYSICS, 2009(10), 003-061 [10.1088/1126-6708/2009/10/003].
Automation of next-to-leading order computations in QCD: the FKS subtraction
Fabio Maltoni;
2009
Abstract
We present the complete automation of the universal subtraction formalism proposed by Frixione, Kunszt, and Signer for the computation of any cross section at the next-to-leading order in QCD. Given a process, the only ingredient to be provided externally is the infrared-and ultraviolet-finite contribution of virtual origin. Our implementation, currently restricted to the case of e(+)e(-) collisions, is built upon and works in the same way as MadGraph. It is particularly suited to parallel computation, and it can deal with any physical process resulting from a theory implemented in MadGraph, thus including the Standard Model as well as Beyond the Standard Model theories. We give results for some sample processes that document the performances of the implementation, and show in particular how the number of subtraction terms has an extremely mild growth with final-state multiplicity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.