Muons provide a clean experimental signature, typically traversing the whole experimental apparatus without decaying. Muon detection systems are therefore usually located at a rather large distance from the primary interaction vertex after all other subdetectors. As such, experimental apparatuses at FCC-ee will certainly employ very large muon systems, covering areas of a few thousand square meters. For obvious reasons of cost, the most suitable detectors to realise these large muon systems are gas detectors. In particular, in recent years, micro-pattern gas detectors (MPGDs) have undergone very interesting developments, providing several new types of detectors with very good spatial and time resolution, high efficiency, high rate capability and high radiation tolerance. The good position and time resolution makes a MPGD an excellent particle tracker, reconstructing tracks at 4-5 m from the primary interaction vertex with sub-mm precision. Therefore MPGDs, apart from efficiently detecting muons, can precisely track and help identifying also hypothesized long lived particles (LLP) that would decay outside of the central trackers. MPGDs have the distinct advantage of being, at least for some detectors and some parts of them, mass-producible by industry, since they employ materials and manufacturing procedures that are used extensively for printed circuit boards (PCB) production. A particularly innovative MPGD, the mu RWELL, is considered as a possible candidate to build the large muon system of the IDEA detector concept for FCC-ee and is described in some more detail. Other technologies that could be considered for the realisation of muon detection systems are also briefly discussed.

Muon detection at FCC-ee

Braibant, S
;
2021

Abstract

Muons provide a clean experimental signature, typically traversing the whole experimental apparatus without decaying. Muon detection systems are therefore usually located at a rather large distance from the primary interaction vertex after all other subdetectors. As such, experimental apparatuses at FCC-ee will certainly employ very large muon systems, covering areas of a few thousand square meters. For obvious reasons of cost, the most suitable detectors to realise these large muon systems are gas detectors. In particular, in recent years, micro-pattern gas detectors (MPGDs) have undergone very interesting developments, providing several new types of detectors with very good spatial and time resolution, high efficiency, high rate capability and high radiation tolerance. The good position and time resolution makes a MPGD an excellent particle tracker, reconstructing tracks at 4-5 m from the primary interaction vertex with sub-mm precision. Therefore MPGDs, apart from efficiently detecting muons, can precisely track and help identifying also hypothesized long lived particles (LLP) that would decay outside of the central trackers. MPGDs have the distinct advantage of being, at least for some detectors and some parts of them, mass-producible by industry, since they employ materials and manufacturing procedures that are used extensively for printed circuit boards (PCB) production. A particularly innovative MPGD, the mu RWELL, is considered as a possible candidate to build the large muon system of the IDEA detector concept for FCC-ee and is described in some more detail. Other technologies that could be considered for the realisation of muon detection systems are also briefly discussed.
2021
Braibant, S; Giacomelli, P
File in questo prodotto:
File Dimensione Formato  
s13360-021-02115-2.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 845.91 kB
Formato Adobe PDF
845.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/906513
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact