Necrosis seen in histopathology Whole Slide Images is a major criterion that contributes towards scoring tumour grade which then determines treatment options. However conventional manual assessment suffers from inter-operator reproducibility impacting grading precision. To address this, automatic necrosis detection using AI may be used to assess necrosis for final scoring that contributes towards the final clinical grade. Using deep learning AI, we describe a novel approach for automating necrosis detection in Whole Slide Images, tested on a canine Soft Tissue Sarcoma (cSTS) data set consisting of canine Perivascular Wall Tumours (cPWTs). A patch-based deep learning approach was developed where different variations of training a DenseNet-161 Convolutional Neural Network architecture were investigated as well as a stacking ensemble. An optimised DenseNet-161 with post-processing produced a hold-out test F1-score of 0.708 demonstrating state-of-the-art performance. This represents a novel first-time automated necrosis detection method in the cSTS domain as well specifically in detecting necrosis in cPWTs demonstrating a significant step forward in reproducible and reliable necrosis assessment for improving the precision of tumour grading.

Deep learning for necrosis detection using canine perivascular wall tumour whole slide images / Rai, Taranpreet; Morisi, Ambra; Bacci, Barbara; Bacon, Nicholas J; Dark, Michael J; Aboellail, Tawfik; Thomas, Spencer Angus; Bober, Miroslaw; La Ragione, Roberto; Wells, Kevin. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 12:1(2022), pp. 10634-10647. [10.1038/s41598-022-13928-1]

Deep learning for necrosis detection using canine perivascular wall tumour whole slide images

Bacci, Barbara;
2022

Abstract

Necrosis seen in histopathology Whole Slide Images is a major criterion that contributes towards scoring tumour grade which then determines treatment options. However conventional manual assessment suffers from inter-operator reproducibility impacting grading precision. To address this, automatic necrosis detection using AI may be used to assess necrosis for final scoring that contributes towards the final clinical grade. Using deep learning AI, we describe a novel approach for automating necrosis detection in Whole Slide Images, tested on a canine Soft Tissue Sarcoma (cSTS) data set consisting of canine Perivascular Wall Tumours (cPWTs). A patch-based deep learning approach was developed where different variations of training a DenseNet-161 Convolutional Neural Network architecture were investigated as well as a stacking ensemble. An optimised DenseNet-161 with post-processing produced a hold-out test F1-score of 0.708 demonstrating state-of-the-art performance. This represents a novel first-time automated necrosis detection method in the cSTS domain as well specifically in detecting necrosis in cPWTs demonstrating a significant step forward in reproducible and reliable necrosis assessment for improving the precision of tumour grading.
2022
Deep learning for necrosis detection using canine perivascular wall tumour whole slide images / Rai, Taranpreet; Morisi, Ambra; Bacci, Barbara; Bacon, Nicholas J; Dark, Michael J; Aboellail, Tawfik; Thomas, Spencer Angus; Bober, Miroslaw; La Ragione, Roberto; Wells, Kevin. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 12:1(2022), pp. 10634-10647. [10.1038/s41598-022-13928-1]
Rai, Taranpreet; Morisi, Ambra; Bacci, Barbara; Bacon, Nicholas J; Dark, Michael J; Aboellail, Tawfik; Thomas, Spencer Angus; Bober, Miroslaw; La Ragione, Roberto; Wells, Kevin
File in questo prodotto:
File Dimensione Formato  
41598_2022_Article_13928.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 3.77 MB
Formato Adobe PDF
3.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/905802
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact