Wireless mesh networks, composed of interconnected clusters of mesh router (MR) and multiple associated mesh clients (MCs), may use cognitive radio equipped transceivers, allowing them to choose licensed frequencies for high bandwidth communication. However, the protection of the licensed users in these bands is a key constraint. In this paper, we propose a reinforcement learning based approach that allows each mesh cluster to independently decide the operative channel, the durations for spectrum sensing, the time of switching, and the duration for which the data transmission happens. The contributions made in this paper are threefold. First, based on accumulated rewards for a channel mapped to the link transmission delays, and the estimated licensed user activity, the MRs assign a weight to each of the channels, thereby selecting the channel with highest performance for MCs operations. Second, our algorithm allows dynamic selection of the sensing time interval that optimizes the link throughput. Third, by cooperative sharing, we allow the MRs to share their channel table information, thus allowing a more accurate learning model. Simulations results reveal significant improvement over classical schemes which have pre-set sensing and transmission durations in the absence of learning.

To Sense or to Transmit: A Learning-Based Spectrum Management Scheme for Cognitive Radio Mesh Networks

DI FELICE, MARCO;BONONI, LUCIANO
2010

Abstract

Wireless mesh networks, composed of interconnected clusters of mesh router (MR) and multiple associated mesh clients (MCs), may use cognitive radio equipped transceivers, allowing them to choose licensed frequencies for high bandwidth communication. However, the protection of the licensed users in these bands is a key constraint. In this paper, we propose a reinforcement learning based approach that allows each mesh cluster to independently decide the operative channel, the durations for spectrum sensing, the time of switching, and the duration for which the data transmission happens. The contributions made in this paper are threefold. First, based on accumulated rewards for a channel mapped to the link transmission delays, and the estimated licensed user activity, the MRs assign a weight to each of the channels, thereby selecting the channel with highest performance for MCs operations. Second, our algorithm allows dynamic selection of the sensing time interval that optimizes the link throughput. Third, by cooperative sharing, we allow the MRs to share their channel table information, thus allowing a more accurate learning model. Simulations results reveal significant improvement over classical schemes which have pre-set sensing and transmission durations in the absence of learning.
Proceedings of the 2010 Fifth IEEE Workshop on Wireless Mesh Networks (WIMESH 2010)
19
24
Di Felice M.; Chowdhury K.R.; Meleis W.; Bononi L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/90564
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact