We present the radio properties of 66 spectroscopically confirmed normal star-forming galaxies (SFGs) at 4.4 < z < 5.9 in the COSMOS field that were [C ii]-detected in the Atacama Large Millimeter/submillimeter Array Large Program to INvestigate [C ii] at Early times (ALPINE). We separate these galaxies ("C ii-detected-all") into lower-redshift ("C ii-detected-lz"; z = 4.5) and higher-redshift ("C ii-detected-hz"; z = 5.6) subsamples, and stack multiwavelength imaging for each subsample from X-ray to radio bands. A radio signal is detected in the stacked 3 GHz images of the C ii-detected-all and lz samples at greater than or similar to 3 sigma. We find that the infrared-radio correlation of our sample, quantified by q (TIR), is lower than the local relation for normal SFGs at a similar to 3 sigma significance level, and is instead broadly consistent with that of bright submillimeter galaxies at 2 < z < 5. Neither of these samples show evidence of dominant active galactic nucleus activity in their stacked spectral energy distributions (SEDs), UV spectra, or stacked X-ray images. Although we cannot rule out the possible effects of the assumed spectral index and applied infrared SED templates in causing these differences, at least partially, the lower obscured fraction of star formation than at lower redshift can alleviate the tension between our stacked q (TIR)s and those of local normal SFGs. It is possible that the dust buildup, which primarily governs the infrared emission, in addition to older stellar populations, has not had enough time to occur fully in these galaxies, whereas the radio emission can respond on a more rapid timescale. Therefore, we might expect a lower q (TIR) to be a general property of high-redshift SFGs.

Lu Shen, Brian C. Lemaux, Lori M. Lubin, Guilin Liu, Matthieu B??thermin, M??d??ric Boquien, et al. (2022). The ALPINE-ALMA [C II] Survey: The Infrared-Radio Correlation and Active Galactic Nucleus Fraction of Star-forming Galaxies at z ~ 4.4-5.9. THE ASTROPHYSICAL JOURNAL, 935(2), 1-16 [10.3847/1538-4357/ac81c5].

The ALPINE-ALMA [C II] Survey: The Infrared-Radio Correlation and Active Galactic Nucleus Fraction of Star-forming Galaxies at z ~ 4.4-5.9

Olga Cucciati;Margherita Talia
Membro del Collaboration Group
;
Daniela Vergani;Sandro Bardelli;Elena Zucca;
2022

Abstract

We present the radio properties of 66 spectroscopically confirmed normal star-forming galaxies (SFGs) at 4.4 < z < 5.9 in the COSMOS field that were [C ii]-detected in the Atacama Large Millimeter/submillimeter Array Large Program to INvestigate [C ii] at Early times (ALPINE). We separate these galaxies ("C ii-detected-all") into lower-redshift ("C ii-detected-lz"; z = 4.5) and higher-redshift ("C ii-detected-hz"; z = 5.6) subsamples, and stack multiwavelength imaging for each subsample from X-ray to radio bands. A radio signal is detected in the stacked 3 GHz images of the C ii-detected-all and lz samples at greater than or similar to 3 sigma. We find that the infrared-radio correlation of our sample, quantified by q (TIR), is lower than the local relation for normal SFGs at a similar to 3 sigma significance level, and is instead broadly consistent with that of bright submillimeter galaxies at 2 < z < 5. Neither of these samples show evidence of dominant active galactic nucleus activity in their stacked spectral energy distributions (SEDs), UV spectra, or stacked X-ray images. Although we cannot rule out the possible effects of the assumed spectral index and applied infrared SED templates in causing these differences, at least partially, the lower obscured fraction of star formation than at lower redshift can alleviate the tension between our stacked q (TIR)s and those of local normal SFGs. It is possible that the dust buildup, which primarily governs the infrared emission, in addition to older stellar populations, has not had enough time to occur fully in these galaxies, whereas the radio emission can respond on a more rapid timescale. Therefore, we might expect a lower q (TIR) to be a general property of high-redshift SFGs.
2022
Lu Shen, Brian C. Lemaux, Lori M. Lubin, Guilin Liu, Matthieu B??thermin, M??d??ric Boquien, et al. (2022). The ALPINE-ALMA [C II] Survey: The Infrared-Radio Correlation and Active Galactic Nucleus Fraction of Star-forming Galaxies at z ~ 4.4-5.9. THE ASTROPHYSICAL JOURNAL, 935(2), 1-16 [10.3847/1538-4357/ac81c5].
Lu Shen; Brian C. Lemaux; Lori M. Lubin; Guilin Liu; Matthieu B??thermin; M??d??ric Boquien; Olga Cucciati; Olivier Le F??vre; Margherita Talia; Danie...espandi
File in questo prodotto:
File Dimensione Formato  
Shen_2022_ApJ_935_177.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 2.05 MB
Formato Adobe PDF
2.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/905586
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact