Context. The Euclid mission is expected to discover thousands of z > 6 galaxies in three deep fields, which together will cover a similar to 50 deg(2) area. However, the limited number of Euclid bands (four) and the low availability of ancillary data could make the identification of z > 6 galaxies challenging.Aims. In this work we assess the degree of contamination by intermediate-redshift galaxies (z = 1-5.8) expected for z > 6 galaxies within the Euclid Deep Survey.Methods. This study is based on similar to 176 000 real galaxies at z = 1-8 in a similar to 0.7 deg(2) area selected from the UltraVISTA ultra-deep survey and similar to 96 000 mock galaxies with 25.3 <= H < 27.0, which altogether cover the range of magnitudes to be probed in the Euclid Deep Survey. We simulate Euclid and ancillary photometry from fiducial 28-band photometry and fit spectral energy distributions to various combinations of these simulated data.Results. We demonstrate that identifying z > 6 galaxies with Euclid data alone will be very effective, with a z > 6 recovery of 91% (88%) for bright (faint) galaxies. For the UltraVISTA-like bright sample, the percentage of z = 1-5.8 contaminants amongst apparent z > 6 galaxies as observed with Euclid alone is 18%, which is reduced to 4% (13%) by including ultra-deep Rubin (Spitzer) photometry. Conversely, for the faint mock sample, the contamination fraction with Euclid alone is considerably higher at 39%, and minimised to 7% when including ultra-deep Rubin data. For UltraVISTA-like bright galaxies, we find that Euclid (I-E - Y-E) > 2:8 and (Y-E - J(E)) < 1.4 colour criteria can separate contaminants from true z > 6 galaxies, although these are applicable to only 54% of the contaminants as many have unconstrained (I-E - Y-E) colours. In the best scenario, these cuts reduce the contamination fraction to 1% whilst preserving 81% of the fiducial z > 6 sample. For the faint mock sample, colour cuts are infeasible; we find instead that a 5 sigma detection threshold requirement in at least one of the Euclid near-infrared bands reduces the contamination fraction to 25%.
S. E. van Mierlo, K. I. Caputi, M. Ashby, H. Atek, M. Bolzonella, R. A. A. Bowler, et al. (2022). Euclid preparation. XXI. Intermediate-redshift contaminants in the search for z >6 galaxies within the Euclid Deep Survey. ASTRONOMY & ASTROPHYSICS, 666, 1-27 [10.1051/0004-6361/202243950].
Euclid preparation. XXI. Intermediate-redshift contaminants in the search for z >6 galaxies within the Euclid Deep Survey
N. Auricchio;M. Baldi;F. Marulli;M. Moresco;L. Moscardini;E. Rossetti;N. Mauri;G. Castignani;R. B. Metcalf;
2022
Abstract
Context. The Euclid mission is expected to discover thousands of z > 6 galaxies in three deep fields, which together will cover a similar to 50 deg(2) area. However, the limited number of Euclid bands (four) and the low availability of ancillary data could make the identification of z > 6 galaxies challenging.Aims. In this work we assess the degree of contamination by intermediate-redshift galaxies (z = 1-5.8) expected for z > 6 galaxies within the Euclid Deep Survey.Methods. This study is based on similar to 176 000 real galaxies at z = 1-8 in a similar to 0.7 deg(2) area selected from the UltraVISTA ultra-deep survey and similar to 96 000 mock galaxies with 25.3 <= H < 27.0, which altogether cover the range of magnitudes to be probed in the Euclid Deep Survey. We simulate Euclid and ancillary photometry from fiducial 28-band photometry and fit spectral energy distributions to various combinations of these simulated data.Results. We demonstrate that identifying z > 6 galaxies with Euclid data alone will be very effective, with a z > 6 recovery of 91% (88%) for bright (faint) galaxies. For the UltraVISTA-like bright sample, the percentage of z = 1-5.8 contaminants amongst apparent z > 6 galaxies as observed with Euclid alone is 18%, which is reduced to 4% (13%) by including ultra-deep Rubin (Spitzer) photometry. Conversely, for the faint mock sample, the contamination fraction with Euclid alone is considerably higher at 39%, and minimised to 7% when including ultra-deep Rubin data. For UltraVISTA-like bright galaxies, we find that Euclid (I-E - Y-E) > 2:8 and (Y-E - J(E)) < 1.4 colour criteria can separate contaminants from true z > 6 galaxies, although these are applicable to only 54% of the contaminants as many have unconstrained (I-E - Y-E) colours. In the best scenario, these cuts reduce the contamination fraction to 1% whilst preserving 81% of the fiducial z > 6 sample. For the faint mock sample, colour cuts are infeasible; we find instead that a 5 sigma detection threshold requirement in at least one of the Euclid near-infrared bands reduces the contamination fraction to 25%.File | Dimensione | Formato | |
---|---|---|---|
aa43950-22.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
6.11 MB
Formato
Adobe PDF
|
6.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.