Context. The Euclid mission is expected to discover thousands of z > 6 galaxies in three deep fields, which together will cover a similar to 50 deg(2) area. However, the limited number of Euclid bands (four) and the low availability of ancillary data could make the identification of z > 6 galaxies challenging.Aims. In this work we assess the degree of contamination by intermediate-redshift galaxies (z = 1-5.8) expected for z > 6 galaxies within the Euclid Deep Survey.Methods. This study is based on similar to 176 000 real galaxies at z = 1-8 in a similar to 0.7 deg(2) area selected from the UltraVISTA ultra-deep survey and similar to 96 000 mock galaxies with 25.3 <= H < 27.0, which altogether cover the range of magnitudes to be probed in the Euclid Deep Survey. We simulate Euclid and ancillary photometry from fiducial 28-band photometry and fit spectral energy distributions to various combinations of these simulated data.Results. We demonstrate that identifying z > 6 galaxies with Euclid data alone will be very effective, with a z > 6 recovery of 91% (88%) for bright (faint) galaxies. For the UltraVISTA-like bright sample, the percentage of z = 1-5.8 contaminants amongst apparent z > 6 galaxies as observed with Euclid alone is 18%, which is reduced to 4% (13%) by including ultra-deep Rubin (Spitzer) photometry. Conversely, for the faint mock sample, the contamination fraction with Euclid alone is considerably higher at 39%, and minimised to 7% when including ultra-deep Rubin data. For UltraVISTA-like bright galaxies, we find that Euclid (I-E - Y-E) > 2:8 and (Y-E - J(E)) < 1.4 colour criteria can separate contaminants from true z > 6 galaxies, although these are applicable to only 54% of the contaminants as many have unconstrained (I-E - Y-E) colours. In the best scenario, these cuts reduce the contamination fraction to 1% whilst preserving 81% of the fiducial z > 6 sample. For the faint mock sample, colour cuts are infeasible; we find instead that a 5 sigma detection threshold requirement in at least one of the Euclid near-infrared bands reduces the contamination fraction to 25%.

Euclid preparation. XXI. Intermediate-redshift contaminants in the search for z >6 galaxies within the Euclid Deep Survey / S. E. van Mierlo; K. I. Caputi; M. Ashby; H. Atek; M. Bolzonella; R. A. A. Bowler; G. Brammer; C. J. Conselice; J. Cuby; P. Dayal; A. D??az-S??nchez; S. L. Finkelstein; H. Hoekstra; A. Humphrey; O. Ilbert; H. J. McCracken; B. Milvang-Jensen; P. A. Oesch; R. Pello; G. Rodighiero; M. Schirmer; S. Toft; J. R. Weaver; S. M. Wilkins; C. J. Willott; G. Zamorani; A. Amara; N. Auricchio; M. Baldi; R. Bender; C. Bodendorf; D. Bonino; E. Branchini; M. Brescia; J. Brinchmann; S. Camera; V. Capobianco; C. Carbone; J. Carretero; M. Castellano; S. Cavuoti; A. Cimatti; R. Cledassou; G. Congedo; L. Conversi; Y. Copin; L. Corcione; F. Courbin; A. Da Silva; H. Degaudenzi; M. Douspis; F. Dubath; X. Dupac; S. Dusini; S. Farrens; S. Ferriol; M. Frailis; E. Franceschi; P. Franzetti; M. Fumana; S. Galeotta; B. Garilli; W. Gillard; B. Gillis; C. Giocoli; A. Grazian; F. Grupp; S. V. H. Haugan; W. Holmes; F. Hormuth; A. Hornstrup; K. Jahnke; M. K??mmel; A. Kiessling; M. Kilbinger; T. Kitching; R. Kohley; M. Kunz; H. Kurki-Suonio; R. Laureijs; S. Ligori; P. B. Lilje; I. Lloro; E. Maiorano; O. Mansutti; O. Marggraf; K. Markovic; F. Marulli; R. Massey; S. Maurogordato; E. Medinaceli; M. Meneghetti; E. Merlin; G. Meylan; M. Moresco; L. Moscardini; E. Munari; S. M. Niemi; C. Padilla; S. Paltani; F. Pasian; K. Pedersen; V. Pettorino; S. Pires; M. Poncet; L. Popa; L. Pozzetti; F. Raison; A. Renzi; J. Rhodes; G. Riccio; E. Romelli; E. Rossetti; R. Saglia; D. Sapone; B. Sartoris; P. Schneider; A. Secroun; C. Sirignano; G. Sirri; L. Stanco; J.-L. Starck; C. Surace; P. Tallada-Cresp??; A. N. Taylor; I. Tereno; R. Toledo-Moreo; F. Torradeflot; I. Tutusaus; E. A. Valentijn; L. Valenziano; T. Vassallo; Y. Wang; A. Zacchei; J. Zoubian; S. Andreon; S. Bardelli; A. Boucaud; J. Graci??-Carpio; D. Maino; N. Mauri; S. Mei; F. Sureau; E. Zucca; H. Aussel; C. Baccigalupi; A. Balaguera-Antol??nez; A. Biviano; A. Blanchard; S. Borgani; E. Bozzo; C. Burigana; R. Cabanac; F. Calura; A. Cappi; C. S. Carvalho; S. Casas; G. Castignani; C. Colodro-Conde; A. R. Cooray; J. Coupon; H. M. Courtois; M. Crocce; O. Cucciati; S. Davini; H. Dole; J. A. Escartin; S. Escoffier; M. Fabricius; M. Farina; K. Ganga; J. Garc??a-Bellido; K. George; F. Giacomini; G. Gozaliasl; S. Gwyn; I. Hook; M. Huertas-Company; V. Kansal; A. Kashlinsky; E. Keihanen; C. C. Kirkpatrick; V. Lindholm; R. Maoli; M. Martinelli; N. Martinet; M. Maturi; R. B. Metcalf; P. Monaco; G. Morgante; A. A. Nucita; L. Patrizii; A. Peel; J. Pollack; V. Popa; C. Porciani; D. Potter; P. Reimberg; A. G. S??nchez; V. Scottez; E. Sefusatti; J. Stadel; R. Teyssier; J. Valiviita; M. Viel. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - STAMPA. - 666:(2022), pp. A200.1-A200.27. [10.1051/0004-6361/202243950]

Euclid preparation. XXI. Intermediate-redshift contaminants in the search for z >6 galaxies within the Euclid Deep Survey

N. Auricchio;M. Baldi;F. Marulli;M. Moresco;L. Moscardini;E. Rossetti;N. Mauri;G. Castignani;R. B. Metcalf;
2022

Abstract

Context. The Euclid mission is expected to discover thousands of z > 6 galaxies in three deep fields, which together will cover a similar to 50 deg(2) area. However, the limited number of Euclid bands (four) and the low availability of ancillary data could make the identification of z > 6 galaxies challenging.Aims. In this work we assess the degree of contamination by intermediate-redshift galaxies (z = 1-5.8) expected for z > 6 galaxies within the Euclid Deep Survey.Methods. This study is based on similar to 176 000 real galaxies at z = 1-8 in a similar to 0.7 deg(2) area selected from the UltraVISTA ultra-deep survey and similar to 96 000 mock galaxies with 25.3 <= H < 27.0, which altogether cover the range of magnitudes to be probed in the Euclid Deep Survey. We simulate Euclid and ancillary photometry from fiducial 28-band photometry and fit spectral energy distributions to various combinations of these simulated data.Results. We demonstrate that identifying z > 6 galaxies with Euclid data alone will be very effective, with a z > 6 recovery of 91% (88%) for bright (faint) galaxies. For the UltraVISTA-like bright sample, the percentage of z = 1-5.8 contaminants amongst apparent z > 6 galaxies as observed with Euclid alone is 18%, which is reduced to 4% (13%) by including ultra-deep Rubin (Spitzer) photometry. Conversely, for the faint mock sample, the contamination fraction with Euclid alone is considerably higher at 39%, and minimised to 7% when including ultra-deep Rubin data. For UltraVISTA-like bright galaxies, we find that Euclid (I-E - Y-E) > 2:8 and (Y-E - J(E)) < 1.4 colour criteria can separate contaminants from true z > 6 galaxies, although these are applicable to only 54% of the contaminants as many have unconstrained (I-E - Y-E) colours. In the best scenario, these cuts reduce the contamination fraction to 1% whilst preserving 81% of the fiducial z > 6 sample. For the faint mock sample, colour cuts are infeasible; we find instead that a 5 sigma detection threshold requirement in at least one of the Euclid near-infrared bands reduces the contamination fraction to 25%.
2022
Euclid preparation. XXI. Intermediate-redshift contaminants in the search for z >6 galaxies within the Euclid Deep Survey / S. E. van Mierlo; K. I. Caputi; M. Ashby; H. Atek; M. Bolzonella; R. A. A. Bowler; G. Brammer; C. J. Conselice; J. Cuby; P. Dayal; A. D??az-S??nchez; S. L. Finkelstein; H. Hoekstra; A. Humphrey; O. Ilbert; H. J. McCracken; B. Milvang-Jensen; P. A. Oesch; R. Pello; G. Rodighiero; M. Schirmer; S. Toft; J. R. Weaver; S. M. Wilkins; C. J. Willott; G. Zamorani; A. Amara; N. Auricchio; M. Baldi; R. Bender; C. Bodendorf; D. Bonino; E. Branchini; M. Brescia; J. Brinchmann; S. Camera; V. Capobianco; C. Carbone; J. Carretero; M. Castellano; S. Cavuoti; A. Cimatti; R. Cledassou; G. Congedo; L. Conversi; Y. Copin; L. Corcione; F. Courbin; A. Da Silva; H. Degaudenzi; M. Douspis; F. Dubath; X. Dupac; S. Dusini; S. Farrens; S. Ferriol; M. Frailis; E. Franceschi; P. Franzetti; M. Fumana; S. Galeotta; B. Garilli; W. Gillard; B. Gillis; C. Giocoli; A. Grazian; F. Grupp; S. V. H. Haugan; W. Holmes; F. Hormuth; A. Hornstrup; K. Jahnke; M. K??mmel; A. Kiessling; M. Kilbinger; T. Kitching; R. Kohley; M. Kunz; H. Kurki-Suonio; R. Laureijs; S. Ligori; P. B. Lilje; I. Lloro; E. Maiorano; O. Mansutti; O. Marggraf; K. Markovic; F. Marulli; R. Massey; S. Maurogordato; E. Medinaceli; M. Meneghetti; E. Merlin; G. Meylan; M. Moresco; L. Moscardini; E. Munari; S. M. Niemi; C. Padilla; S. Paltani; F. Pasian; K. Pedersen; V. Pettorino; S. Pires; M. Poncet; L. Popa; L. Pozzetti; F. Raison; A. Renzi; J. Rhodes; G. Riccio; E. Romelli; E. Rossetti; R. Saglia; D. Sapone; B. Sartoris; P. Schneider; A. Secroun; C. Sirignano; G. Sirri; L. Stanco; J.-L. Starck; C. Surace; P. Tallada-Cresp??; A. N. Taylor; I. Tereno; R. Toledo-Moreo; F. Torradeflot; I. Tutusaus; E. A. Valentijn; L. Valenziano; T. Vassallo; Y. Wang; A. Zacchei; J. Zoubian; S. Andreon; S. Bardelli; A. Boucaud; J. Graci??-Carpio; D. Maino; N. Mauri; S. Mei; F. Sureau; E. Zucca; H. Aussel; C. Baccigalupi; A. Balaguera-Antol??nez; A. Biviano; A. Blanchard; S. Borgani; E. Bozzo; C. Burigana; R. Cabanac; F. Calura; A. Cappi; C. S. Carvalho; S. Casas; G. Castignani; C. Colodro-Conde; A. R. Cooray; J. Coupon; H. M. Courtois; M. Crocce; O. Cucciati; S. Davini; H. Dole; J. A. Escartin; S. Escoffier; M. Fabricius; M. Farina; K. Ganga; J. Garc??a-Bellido; K. George; F. Giacomini; G. Gozaliasl; S. Gwyn; I. Hook; M. Huertas-Company; V. Kansal; A. Kashlinsky; E. Keihanen; C. C. Kirkpatrick; V. Lindholm; R. Maoli; M. Martinelli; N. Martinet; M. Maturi; R. B. Metcalf; P. Monaco; G. Morgante; A. A. Nucita; L. Patrizii; A. Peel; J. Pollack; V. Popa; C. Porciani; D. Potter; P. Reimberg; A. G. S??nchez; V. Scottez; E. Sefusatti; J. Stadel; R. Teyssier; J. Valiviita; M. Viel. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - STAMPA. - 666:(2022), pp. A200.1-A200.27. [10.1051/0004-6361/202243950]
S. E. van Mierlo; K. I. Caputi; M. Ashby; H. Atek; M. Bolzonella; R. A. A. Bowler; G. Brammer; C. J. Conselice; J. Cuby; P. Dayal; A. D??az-S??nchez; S. L. Finkelstein; H. Hoekstra; A. Humphrey; O. Ilbert; H. J. McCracken; B. Milvang-Jensen; P. A. Oesch; R. Pello; G. Rodighiero; M. Schirmer; S. Toft; J. R. Weaver; S. M. Wilkins; C. J. Willott; G. Zamorani; A. Amara; N. Auricchio; M. Baldi; R. Bender; C. Bodendorf; D. Bonino; E. Branchini; M. Brescia; J. Brinchmann; S. Camera; V. Capobianco; C. Carbone; J. Carretero; M. Castellano; S. Cavuoti; A. Cimatti; R. Cledassou; G. Congedo; L. Conversi; Y. Copin; L. Corcione; F. Courbin; A. Da Silva; H. Degaudenzi; M. Douspis; F. Dubath; X. Dupac; S. Dusini; S. Farrens; S. Ferriol; M. Frailis; E. Franceschi; P. Franzetti; M. Fumana; S. Galeotta; B. Garilli; W. Gillard; B. Gillis; C. Giocoli; A. Grazian; F. Grupp; S. V. H. Haugan; W. Holmes; F. Hormuth; A. Hornstrup; K. Jahnke; M. K??mmel; A. Kiessling; M. Kilbinger; T. Kitching; R. Kohley; M. Kunz; H. Kurki-Suonio; R. Laureijs; S. Ligori; P. B. Lilje; I. Lloro; E. Maiorano; O. Mansutti; O. Marggraf; K. Markovic; F. Marulli; R. Massey; S. Maurogordato; E. Medinaceli; M. Meneghetti; E. Merlin; G. Meylan; M. Moresco; L. Moscardini; E. Munari; S. M. Niemi; C. Padilla; S. Paltani; F. Pasian; K. Pedersen; V. Pettorino; S. Pires; M. Poncet; L. Popa; L. Pozzetti; F. Raison; A. Renzi; J. Rhodes; G. Riccio; E. Romelli; E. Rossetti; R. Saglia; D. Sapone; B. Sartoris; P. Schneider; A. Secroun; C. Sirignano; G. Sirri; L. Stanco; J.-L. Starck; C. Surace; P. Tallada-Cresp??; A. N. Taylor; I. Tereno; R. Toledo-Moreo; F. Torradeflot; I. Tutusaus; E. A. Valentijn; L. Valenziano; T. Vassallo; Y. Wang; A. Zacchei; J. Zoubian; S. Andreon; S. Bardelli; A. Boucaud; J. Graci??-Carpio; D. Maino; N. Mauri; S. Mei; F. Sureau; E. Zucca; H. Aussel; C. Baccigalupi; A. Balaguera-Antol??nez; A. Biviano; A. Blanchard; S. Borgani; E. Bozzo; C. Burigana; R. Cabanac; F. Calura; A. Cappi; C. S. Carvalho; S. Casas; G. Castignani; C. Colodro-Conde; A. R. Cooray; J. Coupon; H. M. Courtois; M. Crocce; O. Cucciati; S. Davini; H. Dole; J. A. Escartin; S. Escoffier; M. Fabricius; M. Farina; K. Ganga; J. Garc??a-Bellido; K. George; F. Giacomini; G. Gozaliasl; S. Gwyn; I. Hook; M. Huertas-Company; V. Kansal; A. Kashlinsky; E. Keihanen; C. C. Kirkpatrick; V. Lindholm; R. Maoli; M. Martinelli; N. Martinet; M. Maturi; R. B. Metcalf; P. Monaco; G. Morgante; A. A. Nucita; L. Patrizii; A. Peel; J. Pollack; V. Popa; C. Porciani; D. Potter; P. Reimberg; A. G. S??nchez; V. Scottez; E. Sefusatti; J. Stadel; R. Teyssier; J. Valiviita; M. Viel
File in questo prodotto:
File Dimensione Formato  
aa43950-22.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 6.11 MB
Formato Adobe PDF
6.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/905042
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 7
social impact