We study rewriting for equational theories in the context of symmetric monoidal categories where there is a separable Frobenius monoid on each object. These categories, also called hypergraph categories, are increasingly relevant: Frobenius structures recently appeared in cross-disciplinary applications, including the study of quantum processes, dynamical systems and natural language processing. In this work we give a combinatorial characterisation of arrows of a free hypergraph category as cospans of labelled hypergraphs and establish a precise correspondence between rewriting modulo Frobenius structure on the one hand and double-pushout rewriting of hypergraphs on the other. This interpretation allows to use results on hypergraphs to ensure decidability of confluence for rewriting in a free hypergraph category. Our results generalise previous approaches where only categories generated by a single object (props) were considered.

Rewriting in free hypegraph categories

Zanasi F.
2017

Abstract

We study rewriting for equational theories in the context of symmetric monoidal categories where there is a separable Frobenius monoid on each object. These categories, also called hypergraph categories, are increasingly relevant: Frobenius structures recently appeared in cross-disciplinary applications, including the study of quantum processes, dynamical systems and natural language processing. In this work we give a combinatorial characterisation of arrows of a free hypergraph category as cospans of labelled hypergraphs and establish a precise correspondence between rewriting modulo Frobenius structure on the one hand and double-pushout rewriting of hypergraphs on the other. This interpretation allows to use results on hypergraphs to ensure decidability of confluence for rewriting in a free hypergraph category. Our results generalise previous approaches where only categories generated by a single object (props) were considered.
2017
Proceedings of the 3rd Workshop on Graphs as Models, GaM 2017
16
30
Zanasi F.
File in questo prodotto:
File Dimensione Formato  
paper (2).pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 743.39 kB
Formato Adobe PDF
743.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/904981
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact