We study rewriting for equational theories in the context of symmetric monoidal categories where there is a separable Frobenius monoid on each object. These categories, also called hypergraph categories, are increasingly relevant: Frobenius structures recently appeared in cross-disciplinary applications, including the study of quantum processes, dynamical systems and natural language processing. In this work we give a combinatorial characterisation of arrows of a free hypergraph category as cospans of labelled hypergraphs and establish a precise correspondence between rewriting modulo Frobenius structure on the one hand and double-pushout rewriting of hypergraphs on the other. This interpretation allows to use results on hypergraphs to ensure decidability of confluence for rewriting in a free hypergraph category. Our results generalise previous approaches where only categories generated by a single object (props) were considered.
Zanasi F. (2017). Rewriting in free hypegraph categories. OPEN PUBL ASSOC, SYDNEY, 00000, AUSTRALIA : Open Publishing Association [10.4204/EPTCS.263.2].
Rewriting in free hypegraph categories
Zanasi F.
2017
Abstract
We study rewriting for equational theories in the context of symmetric monoidal categories where there is a separable Frobenius monoid on each object. These categories, also called hypergraph categories, are increasingly relevant: Frobenius structures recently appeared in cross-disciplinary applications, including the study of quantum processes, dynamical systems and natural language processing. In this work we give a combinatorial characterisation of arrows of a free hypergraph category as cospans of labelled hypergraphs and establish a precise correspondence between rewriting modulo Frobenius structure on the one hand and double-pushout rewriting of hypergraphs on the other. This interpretation allows to use results on hypergraphs to ensure decidability of confluence for rewriting in a free hypergraph category. Our results generalise previous approaches where only categories generated by a single object (props) were considered.File | Dimensione | Formato | |
---|---|---|---|
paper (2).pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
743.39 kB
Formato
Adobe PDF
|
743.39 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.