Probabilistic logic programming is increasingly important in artificial intelligence and related fields as a formalism to reason about uncertainty. It generalises logic programming with the possibility of annotating clauses with probabilities. This paper proposes a coalgebraic perspective on probabilistic logic programming. Programs are modelled as coalgebras for a certain functor F, and two semantics are given in terms of cofree coalgebras. First, the cofree F-coalgebra yields a semantics in terms of derivation trees. Second, by embedding F into another type G, as cofree G-coalgebra we obtain a “possible worlds” interpretation of programs, from which one may recover the usual distribution semantics of probabilistic logic programming.
Gu T., Zanasi F. (2019). A coalgebraic perspective on probabilistic logic programming. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing [10.4230/LIPIcs.CALCO.2019.10].
A coalgebraic perspective on probabilistic logic programming
Zanasi F.
2019
Abstract
Probabilistic logic programming is increasingly important in artificial intelligence and related fields as a formalism to reason about uncertainty. It generalises logic programming with the possibility of annotating clauses with probabilities. This paper proposes a coalgebraic perspective on probabilistic logic programming. Programs are modelled as coalgebras for a certain functor F, and two semantics are given in terms of cofree coalgebras. First, the cofree F-coalgebra yields a semantics in terms of derivation trees. Second, by embedding F into another type G, as cofree G-coalgebra we obtain a “possible worlds” interpretation of programs, from which one may recover the usual distribution semantics of probabilistic logic programming.File | Dimensione | Formato | |
---|---|---|---|
LIPIcs-CALCO-2019-10.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.8 MB
Formato
Adobe PDF
|
1.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.