Probabilistic logic programming is increasingly important in artificial intelligence and related fields as a formalism to reason about uncertainty. It generalises logic programming with the possibility of annotating clauses with probabilities. This paper proposes a coalgebraic semantics on probabilistic logic programming. Programs are modelled as coalgebras for a certain functor F, and two semantics are given in terms of cofree coalgebras. First, the cofree F-coalgebra yields a semantics in terms of derivation trees. Second, by embedding F into another type G, as cofree G-coalgebra we obtain a 'possible worlds' interpretation of programs, from which one may recover the usual distribution semantics of probabilistic logic programming. Furthermore, we show that a similar approach can be used to provide a coalgebraic semantics to weighted logic programming.

Coalgebraic semantics for probabilistic logic programming

Zanasi F.
2021

Abstract

Probabilistic logic programming is increasingly important in artificial intelligence and related fields as a formalism to reason about uncertainty. It generalises logic programming with the possibility of annotating clauses with probabilities. This paper proposes a coalgebraic semantics on probabilistic logic programming. Programs are modelled as coalgebras for a certain functor F, and two semantics are given in terms of cofree coalgebras. First, the cofree F-coalgebra yields a semantics in terms of derivation trees. Second, by embedding F into another type G, as cofree G-coalgebra we obtain a 'possible worlds' interpretation of programs, from which one may recover the usual distribution semantics of probabilistic logic programming. Furthermore, we show that a similar approach can be used to provide a coalgebraic semantics to weighted logic programming.
File in questo prodotto:
File Dimensione Formato  
2012.03916.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/904592
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact