Two vertices x and y are said to be finitely connected if they belong to the same cluster and this cluster is finite. We derive sharp asymptotics of finite connections for super-critical Bernoulli bond percolation on Z^2. These asymptotics are based on a detailed fluctuation analysis of long finite super-critical clusters or, more precisely, of dual open (sub-critical) loopswhich surround such clusters.
Titolo: | Finite Connections for Supercritical Bernoulli Bond Percolation in 2D |
Autore/i: | CAMPANINO, MASSIMO; D. Ioffe; O. Louidor |
Autore/i Unibo: | |
Anno: | 2010 |
Rivista: | |
Abstract: | Two vertices x and y are said to be finitely connected if they belong to the same cluster and this cluster is finite. We derive sharp asymptotics of finite connections for super-critical Bernoulli bond percolation on Z^2. These asymptotics are based on a detailed fluctuation analysis of long finite super-critical clusters or, more precisely, of dual open (sub-critical) loopswhich surround such clusters. |
Data prodotto definitivo in UGOV: | 2010-07-02 13:42:06 |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.