Two vertices x and y are said to be finitely connected if they belong to the same cluster and this cluster is finite. We derive sharp asymptotics of finite connections for super-critical Bernoulli bond percolation on Z^2. These asymptotics are based on a detailed fluctuation analysis of long finite super-critical clusters or, more precisely, of dual open (sub-critical) loopswhich surround such clusters.

M. Campanino, D. Ioffe, O. Louidor (2010). Finite Connections for Supercritical Bernoulli Bond Percolation in 2D. MARKOV PROCESSES AND RELATED FIELDS, 16, 225-266.

Finite Connections for Supercritical Bernoulli Bond Percolation in 2D

CAMPANINO, MASSIMO;
2010

Abstract

Two vertices x and y are said to be finitely connected if they belong to the same cluster and this cluster is finite. We derive sharp asymptotics of finite connections for super-critical Bernoulli bond percolation on Z^2. These asymptotics are based on a detailed fluctuation analysis of long finite super-critical clusters or, more precisely, of dual open (sub-critical) loopswhich surround such clusters.
2010
M. Campanino, D. Ioffe, O. Louidor (2010). Finite Connections for Supercritical Bernoulli Bond Percolation in 2D. MARKOV PROCESSES AND RELATED FIELDS, 16, 225-266.
M. Campanino; D. Ioffe; O. Louidor
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/90439
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact