Let $q_m=P(X\le m)$, where $m$ is a positive integer and $X$ a binomial random variable with parameters $n$ and $m/n$. Va\v{s}ek Chv\a'atal conjectured that, for fixed $n\ge 2$, $q_m$ attains its minimum when $m$ is the integer closest to $2n/3$. As shown by Svante Janson, this conjecture is true for large $n$. Here, we prove that the conjecture is actually true for every $n\ge 2$.

Barabesi Lucio, Pratelli Luca, Rigo Pietro (2023). On the Chvatal-Janson conjecture. STATISTICS & PROBABILITY LETTERS, 194(March), 1-6 [10.1016/j.spl.2022.109744].

On the Chvatal-Janson conjecture

Rigo Pietro
2023

Abstract

Let $q_m=P(X\le m)$, where $m$ is a positive integer and $X$ a binomial random variable with parameters $n$ and $m/n$. Va\v{s}ek Chv\a'atal conjectured that, for fixed $n\ge 2$, $q_m$ attains its minimum when $m$ is the integer closest to $2n/3$. As shown by Svante Janson, this conjecture is true for large $n$. Here, we prove that the conjecture is actually true for every $n\ge 2$.
2023
Barabesi Lucio, Pratelli Luca, Rigo Pietro (2023). On the Chvatal-Janson conjecture. STATISTICS & PROBABILITY LETTERS, 194(March), 1-6 [10.1016/j.spl.2022.109744].
Barabesi Lucio; Pratelli Luca; Rigo Pietro
File in questo prodotto:
File Dimensione Formato  
11585_903684.pdf

Open Access dal 01/04/2024

Descrizione: Post-print con copertina
Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/903684
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact