Let $q_m=P(X\le m)$, where $m$ is a positive integer and $X$ a binomial random variable with parameters $n$ and $m/n$. Va\v{s}ek Chv\a'atal conjectured that, for fixed $n\ge 2$, $q_m$ attains its minimum when $m$ is the integer closest to $2n/3$. As shown by Svante Janson, this conjecture is true for large $n$. Here, we prove that the conjecture is actually true for every $n\ge 2$.
Barabesi Lucio, Pratelli Luca, Rigo Pietro (2023). On the Chvatal-Janson conjecture. STATISTICS & PROBABILITY LETTERS, 194(March), 1-6 [10.1016/j.spl.2022.109744].
On the Chvatal-Janson conjecture
Rigo Pietro
2023
Abstract
Let $q_m=P(X\le m)$, where $m$ is a positive integer and $X$ a binomial random variable with parameters $n$ and $m/n$. Va\v{s}ek Chv\a'atal conjectured that, for fixed $n\ge 2$, $q_m$ attains its minimum when $m$ is the integer closest to $2n/3$. As shown by Svante Janson, this conjecture is true for large $n$. Here, we prove that the conjecture is actually true for every $n\ge 2$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
11585_903684.pdf
Open Access dal 01/04/2024
Descrizione: Post-print con copertina
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.