We continue the study of positive singular solutions of PDEs arising from double phase functionals started in [6]. In particular, we consider the case p < q < 2, and we relax the assumption on the capacity of the singular set using an intrinsic notion of capacity.

Biagi, S., Esposito, F., Vecchi, E. (2023). SYMMETRY OF INTRINSICALLY SINGULAR SOLUTIONS OF DOUBLE PHASE PROBLEMS. DIFFERENTIAL AND INTEGRAL EQUATIONS, 36(3-4), 229-246 [10.57262/die036-0304-229].

SYMMETRY OF INTRINSICALLY SINGULAR SOLUTIONS OF DOUBLE PHASE PROBLEMS

Vecchi, E
2023

Abstract

We continue the study of positive singular solutions of PDEs arising from double phase functionals started in [6]. In particular, we consider the case p < q < 2, and we relax the assumption on the capacity of the singular set using an intrinsic notion of capacity.
2023
Biagi, S., Esposito, F., Vecchi, E. (2023). SYMMETRY OF INTRINSICALLY SINGULAR SOLUTIONS OF DOUBLE PHASE PROBLEMS. DIFFERENTIAL AND INTEGRAL EQUATIONS, 36(3-4), 229-246 [10.57262/die036-0304-229].
Biagi, S; Esposito, F; Vecchi, E
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/903378
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact