Purpose Automatic anatomical therapeutic chemical (ATC) classification is progressing at a rapid pace because of its potential in drug development. Predicting an unknown compound's therapeutic and chemical characteristics in terms of how it affects multiple organs and physiological systems makes automatic ATC classification a vital yet challenging multilabel problem. The aim of this paper is to experimentally derive an ensemble of different feature descriptors and classifiers for ATC classification that outperforms the state-of-the-art. Design/methodology/approach The proposed method is an ensemble generated by the fusion of neural networks (i.e. a tabular model and long short-term memory networks (LSTM)) and multilabel classifiers based on multiple linear regression (hMuLab). All classifiers are trained on three sets of descriptors. Features extracted from the trained LSTMs are also fed into hMuLab. Evaluations of ensembles are compared on a benchmark data set of 3883 ATC-coded pharmaceuticals taken from KEGG, a publicly available drug databank. Findings Experiments demonstrate the power of the authors’ best ensemble, EnsATC, which is shown to outperform the best methods reported in the literature, including the state-of-the-art developed by the fast.ai research group. The MATLAB source code of the authors’ system is freely available to the public at https://github.com/LorisNanni/Neural-networks-for-anatomical-therapeutic-chemical-ATC-classification. Originality/value This study demonstrates the power of extracting LSTM features and combining them with ATC descriptors in ensembles for ATC classification.

Neural networks for anatomical therapeutic chemical (ATC) classification

Lumini A.;
2022

Abstract

Purpose Automatic anatomical therapeutic chemical (ATC) classification is progressing at a rapid pace because of its potential in drug development. Predicting an unknown compound's therapeutic and chemical characteristics in terms of how it affects multiple organs and physiological systems makes automatic ATC classification a vital yet challenging multilabel problem. The aim of this paper is to experimentally derive an ensemble of different feature descriptors and classifiers for ATC classification that outperforms the state-of-the-art. Design/methodology/approach The proposed method is an ensemble generated by the fusion of neural networks (i.e. a tabular model and long short-term memory networks (LSTM)) and multilabel classifiers based on multiple linear regression (hMuLab). All classifiers are trained on three sets of descriptors. Features extracted from the trained LSTMs are also fed into hMuLab. Evaluations of ensembles are compared on a benchmark data set of 3883 ATC-coded pharmaceuticals taken from KEGG, a publicly available drug databank. Findings Experiments demonstrate the power of the authors’ best ensemble, EnsATC, which is shown to outperform the best methods reported in the literature, including the state-of-the-art developed by the fast.ai research group. The MATLAB source code of the authors’ system is freely available to the public at https://github.com/LorisNanni/Neural-networks-for-anatomical-therapeutic-chemical-ATC-classification. Originality/value This study demonstrates the power of extracting LSTM features and combining them with ATC descriptors in ensembles for ATC classification.
2022
Nanni L.; Lumini A.; Brahnam S.
File in questo prodotto:
File Dimensione Formato  
10-1108_ACI-11-2021-0301.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 705.8 kB
Formato Adobe PDF
705.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/902545
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact