Tropical modes of variability, such as El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), exert a strong influence on the interannual variability of Australian precipitation. Nevertheless, commonly used indices of ENSO and IOD variability display significant co-variability that prevents a robust quantification of the independent contribution of each mode to precipitation anomalies. This co-variability issue is often addressed by statistically removing ENSO or IOD variability from the precipitation field before calculating teleconnection patterns. However, by performing a suite of coupled and uncoupled modeling experiments in which either ENSO or IOD variability is physically removed, we show that ENSO-only-driven precipitation patterns computed by statistically removing the IOD influence significantly underestimate the impact of ENSO on Australian precipitation variability. Inspired by this, we propose a conceptual model that allows one to effectively separate the contribution of each mode to Australian precipitation variability.
Revisiting ENSO and IOD Contributions to Australian Precipitation
Liguori G.Primo
;Di Lorenzo E.
2022
Abstract
Tropical modes of variability, such as El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), exert a strong influence on the interannual variability of Australian precipitation. Nevertheless, commonly used indices of ENSO and IOD variability display significant co-variability that prevents a robust quantification of the independent contribution of each mode to precipitation anomalies. This co-variability issue is often addressed by statistically removing ENSO or IOD variability from the precipitation field before calculating teleconnection patterns. However, by performing a suite of coupled and uncoupled modeling experiments in which either ENSO or IOD variability is physically removed, we show that ENSO-only-driven precipitation patterns computed by statistically removing the IOD influence significantly underestimate the impact of ENSO on Australian precipitation variability. Inspired by this, we propose a conceptual model that allows one to effectively separate the contribution of each mode to Australian precipitation variability.File | Dimensione | Formato | |
---|---|---|---|
Liguori_EtAl_2021_GRL.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso libero gratuito
Dimensione
6.98 MB
Formato
Adobe PDF
|
6.98 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.