Non-covalent interactions between aromatic molecules and water are fundamental in many chemical and biological processes, and their accurate description is essential to understand molecular relative configurations. Here we present the rotational spectroscopy study of the water complexes of the polycyclic aromatic hydrocarbon 1,4-naphthoquinone (1,4-NQ). In 1,4-NQ-(H2O)1,2, water molecules bind through O-H···O and C-H···O hydrogen bonds and are located on the plane of 1,4-NQ. For 1,4-NQ-(H2O)3, in-plane and above-plane water configurations are observed exhibiting O-H···O, C-H···O, and lone pair···π-hole interactions. The observation of different water arrangements for 1,4-NQ-(H2O)3 allows benchmarking theoretical methods and shows that they have great difficulty in predicting energy orderings due to the strong competition of C-H···O binding with πand π-hole interactions. This study provides important insight into water interactions with aromatic systems and the challenges in their modeling.

Competition between In-Plane vs Above-Plane Configurations of Water with Aromatic Molecules: Non-Covalent Interactions in 1,4-Naphthoquinone-(H2O)1-3Complexes

Evangelisti L.;
2022

Abstract

Non-covalent interactions between aromatic molecules and water are fundamental in many chemical and biological processes, and their accurate description is essential to understand molecular relative configurations. Here we present the rotational spectroscopy study of the water complexes of the polycyclic aromatic hydrocarbon 1,4-naphthoquinone (1,4-NQ). In 1,4-NQ-(H2O)1,2, water molecules bind through O-H···O and C-H···O hydrogen bonds and are located on the plane of 1,4-NQ. For 1,4-NQ-(H2O)3, in-plane and above-plane water configurations are observed exhibiting O-H···O, C-H···O, and lone pair···π-hole interactions. The observation of different water arrangements for 1,4-NQ-(H2O)3 allows benchmarking theoretical methods and shows that they have great difficulty in predicting energy orderings due to the strong competition of C-H···O binding with πand π-hole interactions. This study provides important insight into water interactions with aromatic systems and the challenges in their modeling.
2022
Baweja S.; Panchagnula S.; Sanz M.E.; Evangelisti L.; Perez C.; West C.; Pate B.H.
File in questo prodotto:
File Dimensione Formato  
114_2022_JPCL_13_9510_Naphthoquinone.pdf

accesso aperto

Descrizione: Articolo
Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/902395
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact