Weakly-bound intermolecular clusters constitute reductionist physical models for non-covalent interactions. Here we report the observation of the monomer, the dimer and the monohydrate of 2-adamantanol, a secondary alcohol with a bulky ten-carbon aliphatic skeleton. The molecular species were generated in a supersonic jet expansion and characterized using broadband chirped-pulse microwave spectroscopy in the 2–8 GHz frequency region. Two different gauche-gauche O-H···O hydrogen-bonded isomers were observed for the dimer of 2-adamantanol, while a single isomer was observed for the monomer and the monohydrate. The experimental rotational parameters were compared with molecular orbital calculations using density functional theory (B3LYP-D3(BJ), B2PLYP-D3(BJ), CAM-B3LYP-D3(BJ), ωB97XD), additionally providing energetic and electron density characterization. The shallow potential energy surface makes the dimer an interesting case study to benchmark dispersion-corrected computational methods and conformational search procedures.
Juanes M., Saragi R.T., Perez C., Evangelisti L., Enriquez L., Jaraiz M., et al. (2022). Hydrogen Bonding in the Dimer and Monohydrate of 2-Adamantanol: A Test Case for Dispersion-Corrected Density Functional Methods. MOLECULES, 27(8), 2584-2600 [10.3390/molecules27082584].
Hydrogen Bonding in the Dimer and Monohydrate of 2-Adamantanol: A Test Case for Dispersion-Corrected Density Functional Methods
Evangelisti L.;
2022
Abstract
Weakly-bound intermolecular clusters constitute reductionist physical models for non-covalent interactions. Here we report the observation of the monomer, the dimer and the monohydrate of 2-adamantanol, a secondary alcohol with a bulky ten-carbon aliphatic skeleton. The molecular species were generated in a supersonic jet expansion and characterized using broadband chirped-pulse microwave spectroscopy in the 2–8 GHz frequency region. Two different gauche-gauche O-H···O hydrogen-bonded isomers were observed for the dimer of 2-adamantanol, while a single isomer was observed for the monomer and the monohydrate. The experimental rotational parameters were compared with molecular orbital calculations using density functional theory (B3LYP-D3(BJ), B2PLYP-D3(BJ), CAM-B3LYP-D3(BJ), ωB97XD), additionally providing energetic and electron density characterization. The shallow potential energy surface makes the dimer an interesting case study to benchmark dispersion-corrected computational methods and conformational search procedures.File | Dimensione | Formato | |
---|---|---|---|
110_2022_Molecules_27_2584_2adamantanol.pdf
accesso aperto
Descrizione: Articolo
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
2.48 MB
Formato
Adobe PDF
|
2.48 MB | Adobe PDF | Visualizza/Apri |
110_2022_Molecules_27_2584_2adamantanol_supp.pdf
accesso aperto
Descrizione: Materiale supplementare
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.53 MB
Formato
Adobe PDF
|
1.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.