This paper describes the conceptualization and implementation of an agent-based model to investigate how varying levels of human presence could affect elements of wolf behavior, including highway crossings; use of areas in proximity to roads and trails; size of home ranges; activities, such as hunting, patrolling, resting, and feeding pups; and survival of individuals in Banff and Kootenay National Parks, Canada. The model consists of a wolf module as the primary component with five packs represented as cognitive agents, and grizzly bear, elk, and human modules that represent dynamic components of the environment. A set of environmental data layers was used to develop a friction model that serves as a base map representing the landscape over which wolves moved. A decision model was built to simulate the sequence of wolf activities. The model was implemented in a Java Programming Language using RePast, an agent-based modeling library. Six months of wolf activities were simulated from April 16 to October 15 (i.e., a season coherent with regard to known wolf behaviors), and calibrated with GPS data from wolf radiocollars (n= 15) deployed from 2002 to 2004. Results showed that the simulated trajectories of wolf movements were correlated with the observed trajectories (Spearman's rho 0.566, P< 0.001); other critical behaviors, such as time spent at the den and not traveling were also correlated. The simulations revealed that wolf movements and behaviors were noticeably affected by the intensity of human presence. The packs' home ranges shrank and wolves crossed highways less frequently with increased human presence. In an extreme example, a wolf pack whose home range is traversed by a high-traffic-volume highway was extirpated due to inability to hunt successfully under a scenario wherein human presence levels were increased 10-fold. The modeling prototype developed in this study may serve as a tool to test hypotheses about human effects on wolves and on other mammals, and guide decision-makers in designing management strategies that minimize impacts on wolves and on other species functionally related to wolves in the ecosystem. © 2010 Elsevier B.V.

Musiani M., Morshed Anwar S., McDermid G.J., Hebblewhite M., Marceau D.J. (2010). How humans shape wolf behavior in Banff and Kootenay National Parks, Canada. ECOLOGICAL MODELLING, 221(19), 2374-2387 [10.1016/j.ecolmodel.2010.06.019].

How humans shape wolf behavior in Banff and Kootenay National Parks, Canada

Musiani M.;
2010

Abstract

This paper describes the conceptualization and implementation of an agent-based model to investigate how varying levels of human presence could affect elements of wolf behavior, including highway crossings; use of areas in proximity to roads and trails; size of home ranges; activities, such as hunting, patrolling, resting, and feeding pups; and survival of individuals in Banff and Kootenay National Parks, Canada. The model consists of a wolf module as the primary component with five packs represented as cognitive agents, and grizzly bear, elk, and human modules that represent dynamic components of the environment. A set of environmental data layers was used to develop a friction model that serves as a base map representing the landscape over which wolves moved. A decision model was built to simulate the sequence of wolf activities. The model was implemented in a Java Programming Language using RePast, an agent-based modeling library. Six months of wolf activities were simulated from April 16 to October 15 (i.e., a season coherent with regard to known wolf behaviors), and calibrated with GPS data from wolf radiocollars (n= 15) deployed from 2002 to 2004. Results showed that the simulated trajectories of wolf movements were correlated with the observed trajectories (Spearman's rho 0.566, P< 0.001); other critical behaviors, such as time spent at the den and not traveling were also correlated. The simulations revealed that wolf movements and behaviors were noticeably affected by the intensity of human presence. The packs' home ranges shrank and wolves crossed highways less frequently with increased human presence. In an extreme example, a wolf pack whose home range is traversed by a high-traffic-volume highway was extirpated due to inability to hunt successfully under a scenario wherein human presence levels were increased 10-fold. The modeling prototype developed in this study may serve as a tool to test hypotheses about human effects on wolves and on other mammals, and guide decision-makers in designing management strategies that minimize impacts on wolves and on other species functionally related to wolves in the ecosystem. © 2010 Elsevier B.V.
2010
Musiani M., Morshed Anwar S., McDermid G.J., Hebblewhite M., Marceau D.J. (2010). How humans shape wolf behavior in Banff and Kootenay National Parks, Canada. ECOLOGICAL MODELLING, 221(19), 2374-2387 [10.1016/j.ecolmodel.2010.06.019].
Musiani M.; Morshed Anwar S.; McDermid G.J.; Hebblewhite M.; Marceau D.J.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/902363
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 23
social impact