Comparative analysis of a number of studies in drought-stressed maize (Zea mays L.) reporting quantitative trait loci (QTLs) for abscisic acid concentration, root characteristics, other morpho-physiological traits (MPTs) and grain yield (GY) reveals their complex genetic basis and the influence of the genetic background and the environment on QTL effects. Chromosome regions (e.g. near umcll on chromosome 1 and near csu133 on chromosome 2) with QTLs controlling a number of MPTs and GY across populations and conditions of different water supply have been identified. Examples are presented on the use of QTL information to elucidate the genetic and physiological bases of the association among MPTs and GY. The QTL approach allows us to develop hypotheses accounting for these associations which can be further tested by developing near isogenic lines (NILs) differing for the QTL alleles. NILs also allow for a more accurate assessment of the breeding value of MPTs and, in some cases, may allow for the map-based cloning of the gene(s) underlying the QTL. Although QTL analysis is still time-consuming and resource-demanding, its integration with genomics and post-genomics approaches (e.g. transcriptome, proteome and metabolome analyses) will play an increasingly important role for the identification and validation of candidate genes affecting MPTs and GY. © 2002 Annals of Botany Company.
Tuberosa R., Salvi S., Sanguineti M.C., Landi P., Maccaferri M., Conti S. (2002). Mapping QTLS regulating morpho-physiological traits and yield: Case studies, shortcomings and perspectives in drought-stressed maize. ANNALS OF BOTANY, 89(SPEC. ISS.), 941-963 [10.1093/aob/mcf134].
Mapping QTLS regulating morpho-physiological traits and yield: Case studies, shortcomings and perspectives in drought-stressed maize
Tuberosa R.;Salvi S.;Sanguineti M. C.;Landi P.;Maccaferri M.;
2002
Abstract
Comparative analysis of a number of studies in drought-stressed maize (Zea mays L.) reporting quantitative trait loci (QTLs) for abscisic acid concentration, root characteristics, other morpho-physiological traits (MPTs) and grain yield (GY) reveals their complex genetic basis and the influence of the genetic background and the environment on QTL effects. Chromosome regions (e.g. near umcll on chromosome 1 and near csu133 on chromosome 2) with QTLs controlling a number of MPTs and GY across populations and conditions of different water supply have been identified. Examples are presented on the use of QTL information to elucidate the genetic and physiological bases of the association among MPTs and GY. The QTL approach allows us to develop hypotheses accounting for these associations which can be further tested by developing near isogenic lines (NILs) differing for the QTL alleles. NILs also allow for a more accurate assessment of the breeding value of MPTs and, in some cases, may allow for the map-based cloning of the gene(s) underlying the QTL. Although QTL analysis is still time-consuming and resource-demanding, its integration with genomics and post-genomics approaches (e.g. transcriptome, proteome and metabolome analyses) will play an increasingly important role for the identification and validation of candidate genes affecting MPTs and GY. © 2002 Annals of Botany Company.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.