This paper presents the outcomes of a contest organized to evaluate methods for the online recognition of heterogeneous gestures from sequences of 3D hand poses. The task is the detection of gestures belonging to a dictionary of 16 classes characterized by different pose and motion features. The dataset features continuous sequences of hand tracking data where the gestures are interleaved with non-significant motions. The data have been captured using the Hololens 2 finger tracking system in a realistic use-case of mixed reality interaction. The evaluation is based not only on the detection performances but also on the latency and the false positives, making it possible to understand the feasibility of practical interaction tools based on the algorithms proposed. The outcomes of the contest's evaluation demonstrate the necessity of further research to reduce recognition errors, while the computational cost of the algorithms proposed is sufficiently low.

SHREC 2022 track on online detection of heterogeneous gestures / Emporio M.; Caputo A.; Giachetti A.; Cristani M.; Borghi G.; D'Eusanio A.; Le M.-Q.; Nguyen H.-D.; Tran M.-T.; Ambellan F.; Hanik M.; Nava-Yazdani E.; von Tycowicz C.. - In: COMPUTERS & GRAPHICS. - ISSN 0097-8493. - ELETTRONICO. - 107:(2022), pp. 241-251. [10.1016/j.cag.2022.07.015]

SHREC 2022 track on online detection of heterogeneous gestures

Borghi G.;
2022

Abstract

This paper presents the outcomes of a contest organized to evaluate methods for the online recognition of heterogeneous gestures from sequences of 3D hand poses. The task is the detection of gestures belonging to a dictionary of 16 classes characterized by different pose and motion features. The dataset features continuous sequences of hand tracking data where the gestures are interleaved with non-significant motions. The data have been captured using the Hololens 2 finger tracking system in a realistic use-case of mixed reality interaction. The evaluation is based not only on the detection performances but also on the latency and the false positives, making it possible to understand the feasibility of practical interaction tools based on the algorithms proposed. The outcomes of the contest's evaluation demonstrate the necessity of further research to reduce recognition errors, while the computational cost of the algorithms proposed is sufficiently low.
2022
SHREC 2022 track on online detection of heterogeneous gestures / Emporio M.; Caputo A.; Giachetti A.; Cristani M.; Borghi G.; D'Eusanio A.; Le M.-Q.; Nguyen H.-D.; Tran M.-T.; Ambellan F.; Hanik M.; Nava-Yazdani E.; von Tycowicz C.. - In: COMPUTERS & GRAPHICS. - ISSN 0097-8493. - ELETTRONICO. - 107:(2022), pp. 241-251. [10.1016/j.cag.2022.07.015]
Emporio M.; Caputo A.; Giachetti A.; Cristani M.; Borghi G.; D'Eusanio A.; Le M.-Q.; Nguyen H.-D.; Tran M.-T.; Ambellan F.; Hanik M.; Nava-Yazdani E.; von Tycowicz C.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/901556
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact