Multi-scale resource selection modeling is used to identify factors that limit species distributions across scales of space and time. This multi-scale nature of habitat suitability complicates the translation of inferences to single, spatial depictions of habitat required for conservation of species. We estimated resource selection functions (RSFs) across three scales for a threatened ungulate, woodland caribou (Rangifer tarandus caribou), with two objectives: (1) to infer the relative effects of two forms of anthropogenic disturbance (forestry and linear features) on woodland caribou distributions at multiple scales and (2) to estimate scale-integrated resource selection functions (SRSFs) that synthesize results across scales for management-oriented habitat suitability mapping. We found a previously undocumented scale-specific switch in woodland caribou response to two forms of anthropogenic disturbance. Caribou avoided forestry cut-blocks at broad scales according to first- and second-order RSFs and avoided linear features at fine scales according to third-order RSFs, corroborating predictions developed according to predator-mediated effects of each disturbance type. Additionally, a single SRSF validated as well as each of three single-scale RSFs when estimating habitat suitability across three different spatial scales of prediction. We demonstrate that a single SRSF can be applied to predict relative habitat suitability at both local and landscape scales in support of critical habitat identification and species recovery. © 2012 by the Ecological Society of America.

Transcending scale dependence in identifying habitat with resource selection functions / DeCesare N.J.; Hebblewhite M.; Schmiegelow F.; Hervieux D.; McDermid G.J.; Neufeld L.; Bradley M.; Whittington J.; Smith K.G.; Morgantini L.E.; Wheatley M.; Musiani M.. - In: ECOLOGICAL APPLICATIONS. - ISSN 1051-0761. - ELETTRONICO. - 22:4(2012), pp. 1068-1083. [10.1890/11-1610.1]

Transcending scale dependence in identifying habitat with resource selection functions

Musiani M.
2012

Abstract

Multi-scale resource selection modeling is used to identify factors that limit species distributions across scales of space and time. This multi-scale nature of habitat suitability complicates the translation of inferences to single, spatial depictions of habitat required for conservation of species. We estimated resource selection functions (RSFs) across three scales for a threatened ungulate, woodland caribou (Rangifer tarandus caribou), with two objectives: (1) to infer the relative effects of two forms of anthropogenic disturbance (forestry and linear features) on woodland caribou distributions at multiple scales and (2) to estimate scale-integrated resource selection functions (SRSFs) that synthesize results across scales for management-oriented habitat suitability mapping. We found a previously undocumented scale-specific switch in woodland caribou response to two forms of anthropogenic disturbance. Caribou avoided forestry cut-blocks at broad scales according to first- and second-order RSFs and avoided linear features at fine scales according to third-order RSFs, corroborating predictions developed according to predator-mediated effects of each disturbance type. Additionally, a single SRSF validated as well as each of three single-scale RSFs when estimating habitat suitability across three different spatial scales of prediction. We demonstrate that a single SRSF can be applied to predict relative habitat suitability at both local and landscape scales in support of critical habitat identification and species recovery. © 2012 by the Ecological Society of America.
2012
Transcending scale dependence in identifying habitat with resource selection functions / DeCesare N.J.; Hebblewhite M.; Schmiegelow F.; Hervieux D.; McDermid G.J.; Neufeld L.; Bradley M.; Whittington J.; Smith K.G.; Morgantini L.E.; Wheatley M.; Musiani M.. - In: ECOLOGICAL APPLICATIONS. - ISSN 1051-0761. - ELETTRONICO. - 22:4(2012), pp. 1068-1083. [10.1890/11-1610.1]
DeCesare N.J.; Hebblewhite M.; Schmiegelow F.; Hervieux D.; McDermid G.J.; Neufeld L.; Bradley M.; Whittington J.; Smith K.G.; Morgantini L.E.; Wheatley M.; Musiani M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/901480
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 37
  • Scopus 163
  • ???jsp.display-item.citation.isi??? 163
social impact