Given the viscosity solution, u, of the Cauchy problem ut + (f(t,x),∇u)+r|A(t,x)∇u| = 0 in ]0,T[× ℝn with u(0,x) = g(x), we describe the arc structure of the set of the points of non-differentiability for u. Moreover, we give a result on the propagation of singularities along the generalized characteristics.

Albano P. (2002). On the singular set for solutions to a class of Hamilton-Jacobi-Bellman equations. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 9(4), 473-497 [10.1007/PL00012610].

On the singular set for solutions to a class of Hamilton-Jacobi-Bellman equations

Albano P.
2002

Abstract

Given the viscosity solution, u, of the Cauchy problem ut + (f(t,x),∇u)+r|A(t,x)∇u| = 0 in ]0,T[× ℝn with u(0,x) = g(x), we describe the arc structure of the set of the points of non-differentiability for u. Moreover, we give a result on the propagation of singularities along the generalized characteristics.
2002
Albano P. (2002). On the singular set for solutions to a class of Hamilton-Jacobi-Bellman equations. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 9(4), 473-497 [10.1007/PL00012610].
Albano P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/901286
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact