The original algorithm contained a mistake that meant the conditional distributions used for the VAR's coefficients were missing a piece of information. We propose a new algorithm that uses the same factorization but includes the missing term. The new, correct algorithm has the same computational complexity as the old, incorrect one (i.e., O(N-4)), and therefore it still allows the estimation of large VARs. (C) 2021 Published by Elsevier B.V.

Carriero, A., Chan, J., Clark, T.E., Marcellino, M. (2022). Corrigendum to “Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors” [J. Econometrics 212 (1) (2019) 137–154]. JOURNAL OF ECONOMETRICS, 227(2), 506-512 [10.1016/j.jeconom.2021.11.010].

Corrigendum to “Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors” [J. Econometrics 212 (1) (2019) 137–154]

Carriero, A;
2022

Abstract

The original algorithm contained a mistake that meant the conditional distributions used for the VAR's coefficients were missing a piece of information. We propose a new algorithm that uses the same factorization but includes the missing term. The new, correct algorithm has the same computational complexity as the old, incorrect one (i.e., O(N-4)), and therefore it still allows the estimation of large VARs. (C) 2021 Published by Elsevier B.V.
2022
Carriero, A., Chan, J., Clark, T.E., Marcellino, M. (2022). Corrigendum to “Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors” [J. Econometrics 212 (1) (2019) 137–154]. JOURNAL OF ECONOMETRICS, 227(2), 506-512 [10.1016/j.jeconom.2021.11.010].
Carriero, A; Chan, J; Clark, TE; Marcellino, M
File in questo prodotto:
File Dimensione Formato  
Corrigendumfinal_ourposting.pdf

Open Access dal 19/12/2023

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/900983
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact