The 9-amino(9-deoxy)epi cinchona alkaloids have expanded the synthetic potential of asymmetric aminocatalysis, enabling the highly stereoselective functionalization of a variety of sterically hindered carbonyl compounds. However, there is a lack of basic understanding of the mechanisms of cinchona-based primary aminocatalysis. Herein, we describe how a combination of experimental and theoretical mechanistic studies has revealed the origin of the stereoselectivity of the Friedel-Crafts alkylation of indoles with α,β-unsaturated ketones catalyzed by 9-amino(9-deoxy)epi quinine. An essential role for the achiral acid cocatalyst is uncovered: upon condensation of the cinchona catalyst with the enone, the resulting covalent imine intermediate and the acid interact to build-up a well-structured ion-pair supramolecular catalytic assembly, which is stabilized by multiple attractive noncovalent interactions. All the components of the assembly cooperatively participate in the stereocontrolling event, with the anion of the achiral acid being the structural element responsible for the π-facial discrimination of the iminium ion intermediate. © 2013 American Chemical Society.

Moran A., Hamilton A., Bo C., Melchiorre P. (2013). A mechanistic rationale for the 9-amino(9-deoxy) epi cinchona alkaloids catalyzed asymmetric reactions via iminium ion activation of enones. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 135(24), 9091-9098 [10.1021/ja404784t].

A mechanistic rationale for the 9-amino(9-deoxy) epi cinchona alkaloids catalyzed asymmetric reactions via iminium ion activation of enones

Melchiorre P.
Ultimo
Supervision
2013

Abstract

The 9-amino(9-deoxy)epi cinchona alkaloids have expanded the synthetic potential of asymmetric aminocatalysis, enabling the highly stereoselective functionalization of a variety of sterically hindered carbonyl compounds. However, there is a lack of basic understanding of the mechanisms of cinchona-based primary aminocatalysis. Herein, we describe how a combination of experimental and theoretical mechanistic studies has revealed the origin of the stereoselectivity of the Friedel-Crafts alkylation of indoles with α,β-unsaturated ketones catalyzed by 9-amino(9-deoxy)epi quinine. An essential role for the achiral acid cocatalyst is uncovered: upon condensation of the cinchona catalyst with the enone, the resulting covalent imine intermediate and the acid interact to build-up a well-structured ion-pair supramolecular catalytic assembly, which is stabilized by multiple attractive noncovalent interactions. All the components of the assembly cooperatively participate in the stereocontrolling event, with the anion of the achiral acid being the structural element responsible for the π-facial discrimination of the iminium ion intermediate. © 2013 American Chemical Society.
2013
Moran A., Hamilton A., Bo C., Melchiorre P. (2013). A mechanistic rationale for the 9-amino(9-deoxy) epi cinchona alkaloids catalyzed asymmetric reactions via iminium ion activation of enones. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 135(24), 9091-9098 [10.1021/ja404784t].
Moran A.; Hamilton A.; Bo C.; Melchiorre P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/900851
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 72
social impact